Skip to main content
Log in

Cloning and characterization of a tomato GTPase-like gene related to yeast and Arabidopsis genes involved in vesicular transport

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The reduced translation product of a tomato cDNA derived from a gene expressed in a number of tomato tissues of different developmental stages contained sequence motifs characteristic of the GTPase superfamily of proteins. The sequence was closely related to the Sar1 protein of Saccharomyces cerevisiae, a protein essential for the formation of protein transport vesicles at the endoplasmic reticulum (ER) (A. Nakano and M. Muramatsu, Cell Biol 109 (1989): 2677–2691). From analysis of the GTPase superfamily gene sequences, including the tomato SAR-like gene, it is proposed that the SAR genes comprise a distinct GTPase subfamily, presumably with a common, essential function in vesicular transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anai T, Hasegawa K, Watanabe Y, Uchimiya H, Ishizaki R, Matsui M: Isolation and analysis of cDNAs encoding small GTP-binding proteins of Arabidopsis thaliana. Gene 108: 259–264 (1991).

    Article  PubMed  Google Scholar 

  2. Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127 (1991).

    Article  PubMed  Google Scholar 

  3. Capon DJ, Chen EY, Levinson AD, Seeburg HP, Goeddel DV: Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302: 33–37 (1983).

    PubMed  Google Scholar 

  4. Chardin P, Tavitian A: Coding sequences of human ral A and ral B cDNAs. Nucl Acids Res 17: 4380 (1989).

    PubMed  Google Scholar 

  5. Dallmann G, Sticher L, Marshallsay C, Nagy F: Molecular characterization of tobacco cDNAs encoding two small GTP-binding proteins. Plant Mol Biol 19: 847–857 (1992).

    PubMed  Google Scholar 

  6. Denich KT, Malloy PJ, Feldman D: Cloning and characterization of the gene encoding the ADP-ribosylation factor in Candida albicans. Gene 110: 123–128 (1992).

    Article  PubMed  Google Scholar 

  7. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  8. d'Enfert C, Gensse M, Gaillardin C: Fission yeast and a plant have functional homologues of the Sar1 and Sec12 proteins involved in ER to Golgi traffic in budding yeast. EMBO J 11: 4205–4211 (1992).

    PubMed  Google Scholar 

  9. d'Enfert C, Wuestehube LJ, Lila T, Schekman R: Sec 12p-dependent membrane binding of the small BTP-binding protein Sarlp promotes formation of transport vesicles from the ER. J Cell Biol 114: 663–670 (1991).

    Article  PubMed  Google Scholar 

  10. Drivas GT, Shih A, Coutavas E, Rush MG, D'Eustachio P: Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol Cell Biol 10: 1793–1798 (1990).

    PubMed  Google Scholar 

  11. Feinberg AP, Vogelstein B: A technique for radiolabelling DNA restriction fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  12. Felsenstein J: PHYLIP-phylogency inference package (Version 3.2) Cladistics 5: 164–166 (1989).

    Google Scholar 

  13. Gallwitz D, Donath C, Sander C: A yeast gene encoding a protein homolgous to the human c-has/bas protooncogene product. Nature 306: 704–707 (1983).

    PubMed  Google Scholar 

  14. Higgins DG, Bleasby AJ, Fuchs R: ClustalV: improved software for multiple sequence alignment. Comput Appl Biosci 8: 189–191 (1991).

    Google Scholar 

  15. Johnson DI, Pringle JR: Molecular characterisation of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol 111: 143–152 (1990).

    Article  PubMed  Google Scholar 

  16. Kahn RA, Goddard C, Newkirk M: Chemical and immunological characterization of the 21 kDa ADP-ribosylation factor of adenylate cyclase. J Biol Chem 263: 8282–8287 (1988).

    PubMed  Google Scholar 

  17. Kahn RA, Der CJ, Bokoch GM: The ras superfamily of GTP-binding proteins: guidelines on nomenclature. FASEB J 6: 2512–2513 (1992).

    PubMed  Google Scholar 

  18. Kahn RA, Kern FG, Clark J, Gelmann EP, Rulka C: Human ADP-ribosylation factors: a functionally conserved family of GTP-binding proteins. J Biol Chem 266: 2606–2614 (1991).

    PubMed  Google Scholar 

  19. Kaiser CA, Schekman R: Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61: 723–733 (1990).

    Article  PubMed  Google Scholar 

  20. Lee E, Speirs J, McGlasson WB, Brady CJ: Messenger RNA changes in tomato fruit pericarp in response to propylene, wounding or ripening. J Plant Physiol 129: 287–299 (1987).

    Google Scholar 

  21. Madaule P, Axele R, Myers AM: Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84: 779–783 (1987).

    PubMed  Google Scholar 

  22. Marchuk D, Drumm M, Saulino A, Collins SF: Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucl Acids Res 19: 1154 (1990).

    Google Scholar 

  23. Matsumoto T, Beach DH: Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell 66: 347–360 (1991).

    PubMed  Google Scholar 

  24. Moll J, Sansig G, Fattori E, van der Putten H: The murine rac 1 gene: cCDNA cloning, tissue distribution and regulated expression of rac1 mRNA by disassembly of actin microfilaments. Oncogene 6: 863–866 (1991).

    PubMed  Google Scholar 

  25. Nakano A, Brada D, Schekman R: A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast. J Cell Biol 107: 851–863 (1988).

    PubMed  Google Scholar 

  26. Nakano A, Muramatsu M: A novel GPT-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 109: 2677–2691 (1989).

    PubMed  Google Scholar 

  27. Nishikawa S, Nakano A: The GTP-binding protein Sar1 is localized to the early compartment of the yeast secretory pathway. Biochem Biophys Acta 1093: 135–143 (1991).

    PubMed  Google Scholar 

  28. Oka T, Nishikawa S, Nakano A: Reconstitution of GTP-binding Sar1 protein function in ER to Golgi transport. J Cell Biol 114: 671–679 (1991).

    PubMed  Google Scholar 

  29. Palmiter RD: Ovalbumin messenger ribonucleic acid translation. J Biol Chem 248: 2095–2106 (1973).

    PubMed  Google Scholar 

  30. Powers S, Kataoka T, Fasano O, Goldfarb M, Strathern J, Broach JR, Wigler M: Genes in S. cerevisiae encoding proteins with domains homolgous to the mammalian ras proteins. Cell 36: 607–612 (1984).

    PubMed  Google Scholar 

  31. Pryer NK, Wuestehube LJ, Schekman R: Vesicle mediated protein sorting. Annu Rev Biochem 61: 471–516 (1992).

    PubMed  Google Scholar 

  32. Regad F, Bardet C, Tremousaygue D, Moisan A, Lescure B, Axelos M: cDNA cloning and expression of an Arabidopsis GTP-binding protein of the ARF family. FEBS Lett 316: 133–136 (1993).

    PubMed  Google Scholar 

  33. Rothman JE, Orci L: Molecular dissection of the secretory pathway. Nature 355: 409–415 (1992).

    PubMed  Google Scholar 

  34. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning; A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  35. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  36. Sano H, Youssefian S: A novel ras-related RGP1 gene encoding a GTP-binding protein has reduced expression in 5-azacytidine-induced dwarf rice. Mol Gen Genet 228: 227–232 (1991).

    Article  PubMed  Google Scholar 

  37. Speirs J, Brady CJ: A coordinated decline in the synthesis of subunits of ribulosebisphosphate carboxylase in ageing wheat leaves. 11. Abundance of messenger RNA. Aus J Plant Physiol 8: 603–618 (1981).

    Google Scholar 

  38. Sewell JL, Kahn RA: Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc Natl Acad Sci USA 85: 4620–4624 (1988).

    PubMed  Google Scholar 

  39. Stearns T, Willingham MC, Botstein D, Kahn RA: ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci USA 87: 1238–1242 (1990).

    PubMed  Google Scholar 

  40. Yeramin P, Chardin P, Madaule P, Tavitian A: Nucleotide sequence of human rho cDNA clone 12. Nucl Acids Res 15: 1869 (1987).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, C. Cloning and characterization of a tomato GTPase-like gene related to yeast and Arabidopsis genes involved in vesicular transport. Plant Mol Biol 24, 525–531 (1994). https://doi.org/10.1007/BF00024120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024120

Key words

Navigation