Skip to main content
Log in

Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 20 July 2007

Abstract

Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19-37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APG II (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Google Scholar 

  • Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM, Oishi K, Daniell H (2007) Field production and functional evaluation of chloroplast-derived interferon alzpha 2b. Plant Biotechnol J (in press). doi:10.1111/j.1467-7652.2007.00258.x

  • Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93–99

    PubMed  CAS  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history, and evolution. Chapman & Hall, New York

    Google Scholar 

  • Bausher MG, Singh ND, Lee S-B, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21

    PubMed  Google Scholar 

  • Bonos SA, Clarke BB, Meyer WA (2006) Breeding for disease resistance in the major cool-season turfgrass. Annu Rev Phytopathol 44:213–234

    PubMed  CAS  Google Scholar 

  • Bryan GJ, McNicoll J, Ramsey G, Meyer RC, De Jong WS (1999) Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor Appl Genet 99:859–867

    CAS  Google Scholar 

  • Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson J, dePamphilis CW, Jansen RK (2006) Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogeny of magnoliids. BMC Evol Biol 6:77

    PubMed  Google Scholar 

  • Carter PR, Hicks DR, Oplinger ES, Doll JD, Bundy LG, Schuler RT, Holmes BJ (1989) Grain Sorghum (Milo). Alternative field crops manual. University of Wisconsin-Extension, Cooperative Extension. http://www.hort.Perdue.edu/newcrop/afcm/sorghum.html

  • Chang C-C, Lin H-C, Lin I-P, Chow T-Y, Chen H-H, Chen W-H, Cheng C-H, Lin C-Y, Liu S-M, Chang C-C, Chaw S-M (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291

    PubMed  CAS  Google Scholar 

  • Chase MW, Palmer JD (1989) Chloroplast DNA systematics of lilioid monocots: resources, feasibility, and an example from the Orchidaceae. Am J Bot 76:1720–1730

    Google Scholar 

  • Chebolu S, Daniell H (2007) Stable expression of GAL/GALNAc lectin of Entamoeba histolytica in transgenic chloroplast and immunogenicity in mice towards vaccine development for amebiasis. Plant Biotechnol J 2:230–239

    Google Scholar 

  • Cheng M, Lowe BA, Spencer MT, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol 40:31–45

    Article  Google Scholar 

  • Crop Plant Resources (2000) Sorghum: Sorghum bicolor. http://darwin.nmsu.edu/∼molbio/plant/sorghum.html (Accessed May 18, 2006)

  • Cui L, Veeraraghavan N, Richer A, Wall K, Jansen RK, Leebens-Mack J, Makalowska I, dePamphillis CW (2006) ChloroplastDB: the chloroplast genome database. Nucleic Acids Res 34:D692–D696 [http://chloroplast.cbio.psu.edu/]

    Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    PubMed  CAS  Google Scholar 

  • Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136–141

    PubMed  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    PubMed  CAS  Google Scholar 

  • Daniell H, Lee SB, Pahchal T, Wiebe P (2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    PubMed  CAS  Google Scholar 

  • Daniell H, Camrmona-Sanchez O, Burns B (2004a) Chaper 8, Chloroplast derived antibodies, biopharmaceuticals and edible vaccines. In: Rischer R, Schillberg S (eds) Molecular Farming. Wiley-VCH, Weinheim, pp 113–133

  • Daniell H, Cohill P, Kumar S, Dufourmantel N, Dubald M (2004b) Chloroplast genetic engineering. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Springer, Dordrecht, pp 423–468

    Google Scholar 

  • Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005a) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    PubMed  CAS  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005b) Breakthroughs in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    PubMed  CAS  Google Scholar 

  • Daniell H, Lee SB, Grevich J, Saski C, Guda C, Tomkins J, Jansen RK (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112:1503–1518

    PubMed  CAS  Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    PubMed  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Saford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    PubMed  CAS  Google Scholar 

  • de Heij HT, Lustig H, Moeskops DM, Bovenberg WA, Bisanz C, Groot GSP (1983) Chloroplast DNAs of Spinacia, Petunia, and Spirodela have similar gene organization. Curr Genet 7:1–6

    Google Scholar 

  • Dhingra A, Portis A Jr, Daniell H (2004) Enhanced translation of a chloroplast-expressed rbcS gene restores small subunit levels and photosynthesis in nuclear rbcS antisense plants. Proc Natl Acad Sci USA 101:6315–6320

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 89:7723–7726

    Google Scholar 

  • Doyle JJ, Doyle JL, Ballenger JA, Palmer JD (1996) The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. Mol Phylogenet Evol 5:429–438

    PubMed  CAS  Google Scholar 

  • Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo J-M, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479–489

    PubMed  CAS  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659

    PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    PubMed  Google Scholar 

  • Elnitski L, Riemer C, Petrykowska H, et al (2002) PipTools: a computational toolkit to annotate and analyze pairwise comparisons of genomic sequences. Genomics 80:681–690

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl M, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fernandez-San MA, Mingeo-Castel AM, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79

    Google Scholar 

  • Garber ED (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–361

    Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003a) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Biol Evol 20:1499–1505

    PubMed  CAS  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003b) The chloroplast genome of the “basal” angiosperm Calycanthus fertilis—structural and phylogenetic analyses. Plant Syst Evol 242:119–135

    CAS  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2004) The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 21:1445–1454

    PubMed  CAS  Google Scholar 

  • Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22:1813–1822

    PubMed  CAS  Google Scholar 

  • Grass Phylogeny Working Group (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Missouri Bot Gard 88:373–457

    Google Scholar 

  • Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 24:83–108

    CAS  Google Scholar 

  • Guda C, Lee SB, Daniell H (2000) Stable expression of biodegradable protein based polymer in tobacco chloroplasts. Plant Cell Rep 19:257–262

    CAS  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, et al (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    PubMed  CAS  Google Scholar 

  • Hirose T, Kusumegi T, Tsudzuki T, Sugiura M (1999) RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet 262:462–467

    PubMed  CAS  Google Scholar 

  • Howe CJ, Barker RF, Bowman CM, Dyer TA (1988) Common features of three inversions in wheat chloroplast DNA. Curr Genet 13:343–349

    PubMed  CAS  Google Scholar 

  • Hupfer H, Swaitek M, Hornung S, et al (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome 1 of the five distinguishable Euoenthera plastomes. Mol Gen Genet 263:581–585

    PubMed  CAS  Google Scholar 

  • Jansen RK, Raubeson LA, Boore JL, et al (2005) Methods for obtaining and analyzing chloroplast genome sequences. Methods Enzymol 395:348–384

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Kaittanis C, Saski C, Lee S-B, Tompkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32

    PubMed  Google Scholar 

  • Jung S, Abbott A, Jesudurai C, Tomkins J, Main D (2005) Frequency, type, distribution, and annotation of simple sequence repeats in Rosaceae ESTs. Funct Integr Genomics 5:136–143

    PubMed  CAS  Google Scholar 

  • Kamarajugadda S, Daniell H (2006) Choroplast derived anthrax and other vaccine antigens: their immunogenic and immunoprotective properties. Expert Rev Vaccines 5:839–849

    PubMed  CAS  Google Scholar 

  • Katayama H, Ogihara Y (1996) Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. Curr Genet 29:572–581

    PubMed  CAS  Google Scholar 

  • Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330

    PubMed  CAS  Google Scholar 

  • Kelchner SA (2002) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Gard 87:482–498

    Google Scholar 

  • Khan M, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915

    PubMed  CAS  Google Scholar 

  • Kim K-J, Lee H-L (2004) Complete chloroplast genome sequence from Korean Ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    PubMed  CAS  Google Scholar 

  • Kota M, Daniell H, Varma S, Garczynski S, Gould F, William M (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840–1845

    PubMed  CAS  Google Scholar 

  • Koya V, Moayeri M, Leppla SH, Daniell H (2005) Plant based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect Immun 73:8266–8274

    PubMed  CAS  Google Scholar 

  • Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423

    PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    PubMed  CAS  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216

    PubMed  CAS  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    PubMed  CAS  Google Scholar 

  • Lee SB, Kwon H, Kwon S, et al (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13

    CAS  Google Scholar 

  • Lee SB, Kaittanis C, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006a) The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms. BMC Genomics 7:61

    PubMed  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, B. Lee SB, Cheong JJ, Daniell H,Kim M (2006b) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

  • Leebens-Mack J, Raubeson LA, Cui L, Kuehl J, Fourcade M, Chumley T, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperms in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol Biol Evol 22:1948–1963

    PubMed  CAS  Google Scholar 

  • Leelavathi S, Reddy V (2003) Chloroplast expression of His-tagged GUS fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49–58

    CAS  Google Scholar 

  • Leelavathi S, Gupta N, Maiti S, Ghosh A, Reddy VS (2003) Overproduction of an alkali- and thermo-stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme. Mol Breed 11:59–67

    CAS  Google Scholar 

  • Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577

    PubMed  CAS  Google Scholar 

  • Lossl A, Eibl C, Harloff HJ, Jung C, Koop H-U (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    PubMed  CAS  Google Scholar 

  • Maier RM, Neckermann K, lgloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    PubMed  CAS  Google Scholar 

  • McBride K, Svab Z, Schaaf D, Hogan P, Stalker D, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology 13:362–365

    PubMed  CAS  Google Scholar 

  • Molina A, Herva-Stubbs S, Daniell H, Mingo-Castel AM, Veramendi J (2004) High yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J 2:141–153

    PubMed  CAS  Google Scholar 

  • National Sorghum Producers (2006) What is Sorghum? www.sorghum.growers.com/Sorghum-101. Cited 06 Nov 2006

  • Nguyen TT, Nugent G, Cardi T, Dix PJ (2005) Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L). Plant Sci 168:1495–1500

    CAS  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, et al (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    CAS  Google Scholar 

  • Palmer JD (1986) Isolation and structural analysis of chloroplast DNA. Methods Enzymol 118:167–186

    Article  CAS  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Hermann RG (ed) The molecular biology of plastids. Cell culture and somatic cell genetics of plants, vol 7A. Springer, Vienna, pp 5–53

    Google Scholar 

  • Palmer JD, Stein DB (1986) Conservation of chloroplast genome structure among vascular plants. Curr Genet 10:823–833

    CAS  Google Scholar 

  • Palmer JD, Osorio B, Thompson WF (1988) Evolutionary significance of inversions in legume chloroplast DNAs. Curr Genet 14:65–74

    CAS  Google Scholar 

  • Peeters NM, Hanson MR (2002) Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression. RNA 8:497–511

    PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    PubMed  CAS  Google Scholar 

  • Provan J, Soranzo N, Wilson N, Goldstein D, Powell W (1999) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947

    PubMed  CAS  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    PubMed  Google Scholar 

  • Quesada-Vargas T, Ruiz ON Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, translation. Plant Physiol 128:1746–1762

    Google Scholar 

  • Quigley F, Weil JH (1985) Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: evidence for gene rearrangements during the evolution of chloroplast genomes. Curr Genet 9:495–503

    PubMed  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry R (ed) Diversity and evolution of plants-genotypic and phenotypic variation in higher plants. CABI Publishing, Wallingford, pp 45–68

    Google Scholar 

  • Reichman JR, Watrud LS, Lee EH, Burdick C, Bollman M, Storm M, King G, Mallory-Smith C (2006) Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Mol Ecol 15:4243–4255

    PubMed  CAS  Google Scholar 

  • Ruf S, Hermann M, Berger I, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    PubMed  CAS  Google Scholar 

  • Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell D (2006) Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7:224

    Google Scholar 

  • Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts––oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J (in press). doi:10.1111/j.1467-7652.2007.00259.x

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of β-ketothiolase. Plant Physiol 138:1232–1246

    PubMed  CAS  Google Scholar 

  • Ruiz O, Hussein S, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    PubMed  CAS  Google Scholar 

  • Saski C, Lee S-B, Daniell H, Wood TC, Tomkins J, Kim H-G, Jansen RK (2005) Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59:309–322

    PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrman RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea) complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Regel R, Du TG, Hupfer H, Herrmann RG, Maier RM (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 19:1602–1612

    PubMed  CAS  Google Scholar 

  • Schwartz S, Elnitski L, Li M, Weirauch M, Riemer C, Smit A, Program NCS, Green ED, Hardison RC, Miller W (2003) MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucleic Acids Res 31:3518–3524

    PubMed  CAS  Google Scholar 

  • Shahid-Masood M, Nishikawa T, Fukuoka S, Njenga PK, Tsudzuki T, Kadowaki K (2004) The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340:133–139

    PubMed  CAS  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analyses. Am J Bot 92:142–166

    CAS  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka, et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Technical advance: stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    PubMed  CAS  Google Scholar 

  • Spangler RE (2003) Taxonomy of Sarga, Sorghum and Vacoparis (Poaceae: Andropogoneae). Aust Syst Bot 16:279–299

    Google Scholar 

  • Spangler RE, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Google Scholar 

  • Staub JM, Garcia B, Graves J, et al (2000) High yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    PubMed  CAS  Google Scholar 

  • Steane DA (2005) Complete nucleotide sequence of the chloroplast genome from the Tasmanian Blue Gum, Eucalyptus globulus (Myrtaceae). DNA Res 12:215–220

    PubMed  CAS  Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods), ver. 4.0. Sinauer Associates, Sunderland

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    PubMed  CAS  Google Scholar 

  • Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94:302–312

    CAS  Google Scholar 

  • US Grains Council (2006) http://www.grains.org/page.ww?section=Barley%2C+Corn+%26+Sorghum &name=Sorghum. Cited 06 Nov 2006

  • USDA (2006) http://www.ars.usda.gov/research/projects/projects.htm?accn_no=408935. Cited 08 Nov 2006

  • Vitanen PV, Devine AL, Kahn S, Deuel DL, Van-Dyk DE, Daniell H (2004) Metabolic engineering of the chloroplast genome using the E. coli ubiC gene reveals that corismate is a readily abundant precursor for 4-hydroxybenzoic acid synthesis in plants. Plant Physiol 136:4048–4060

    Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    PubMed  CAS  Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, Van de Water PK (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci USA 101:14533–14538

    PubMed  CAS  Google Scholar 

  • Watson J, Koya V, Leppla SH, Daniell H (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374–4384

    PubMed  CAS  Google Scholar 

  • Willis D, Hester M, Liu A, Burke J (2005) Chloroplast SSR polymorphisms in the compositae and the mode of organellar inheritance in Helianthus annuus. Theor Appl Genet 110:941–947

    Google Scholar 

  • Wipff JK, Fricker C (2001) Gene flow from transgenic creeping bentgrass (Agrostis stolonifera L.) in the Willamette valley, Oregon. Int Turfgrass Soc Res J 9:224–242

    Google Scholar 

  • Wolf PG, Rowe CA, Hasebe M (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339:89–97

    PubMed  CAS  Google Scholar 

  • Wyman SK, Boore JL, Jansen RK (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    PubMed  CAS  Google Scholar 

  • Zeltz P, Hess WR, Neckermann K, Borner T, Kossel H (1993) Editing of the chloroplast rpoB transcript is independent of chloroplast translation and shows different patterns in barley and maize. EMBO J 12:4291–4296

    PubMed  CAS  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin. [www.bio.utexas.edu/faculty/ antisense/garli/Garli.html]

Download references

Acknowledgments

Investigations reported in this article were supported in part by grants from USDA 3611-21000-017-00D and NIH 2 R01 GM 063879 to Henry Daniell, from NSF DEB 0120709 to Robert K. Jansen, from USDA USDA-BRAG 2005-39454-16511, CREES SC-1700315 to Hong Luo and from the Research Council of Norway BILAT-174998/D15 to Jihong Liu Clarke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Daniell.

Additional information

Communicated by A. Paterson.

An erratum to this article is available at http://dx.doi.org/10.1007/s00122-007-0595-0.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2007_567_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saski, C., Lee, SB., Fjellheim, S. et al. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115, 571–590 (2007). https://doi.org/10.1007/s00122-007-0567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0567-4

Keywords

Navigation