Skip to main content
Log in

Down the Slippery Slope: Plastid Genome Evolution in Convolvulaceae

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Cuscuta (dodder) is the only parasitic genus found in Convolvulaceae (morning-glory family). We used long PCR approach to obtain large portions of plastid genome sequence from Cuscuta sandwichiana in order to determine the size, structure, gene content, and synteny in the plastid genome of this Cuscuta species belonging to the poorly investigated holoparasitic subgenus Grammica. These new sequences are compared with the tobacco chloroplast genome, and, where data are available, with corresponding regions from taxa in the other Cuscuta subgenera. When all known plastid genome structural rearrangements in parasitic and nonparasitic Convolvulaceae are considered in a molecular phylogenetic framework, three categories of rearrangements in Cuscuta are revealed: plesiomorphic, autapomorphic, and synapomorphic. Many of the changes in Cuscuta, previously attributed to its parasitic mode of life, are better explained either as plesiomorphic conditions within the family, i.e., conditions shared with the rest of the Convolvulaceae, or, in most cases, autapomorphies of particular Cuscuta taxa, not shared with the rest of the species in the genus. The synapomorphic rearrangements are most likely to correlate with the parasitic lifestyle, because they represent changes found in Cuscuta exclusively. However, it appears that most of the affected regions, belonging to all of these three categories, have probably no function (e.g., introns) or are of unknown function (a number of open reading frames, the function of which, if any, has yet to be discovered).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adams KL, Song K, Roessler PG, Nugent JM, Doyle JL, Doyle JJ, Palmer JD (1999) Intracellular gene transfer in action: dual transcription and multiple silencing of nuclear and mitochondrial cox2 genes in legumes. Proc Natl Acad Sci USA 96:13863–13868

    Article  PubMed  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356

    Google Scholar 

  • Bock R, Hagemann R, Kössel H, Kudla J (1993) Tissue- and stage-specific modulation of RNA editing of psbF and psbL transcript from spinach plastid: a new regulatory mechanism? Mol Gen Genet 240:238–244

    Article  PubMed  Google Scholar 

  • Bömmer D, Haberhausen G, Zetsche K (1993) A large deletion in the plastid DNA of the holoparasitic flowering plant Cuscuta reflem concerning two ribosomal proteins (rpl2, rpl23), one transfer RNA (trnI) and an ORF 2280 homologue. Curr Genet 24:171–176

    Article  PubMed  Google Scholar 

  • Bungard RA (2004) Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. Bioessays 26:235–247

    Article  PubMed  Google Scholar 

  • Casano LM, Zapata JM, Martin M, Sabater B (2000) Chlororespiration and poising of cyclic electron transport: plastoquinone as electron transporter between tylakoid NADH dehydrogenase and peroxidase. J Biol Chem 275:942–948

    Article  PubMed  Google Scholar 

  • Cronquist A (1988) The evolution and classification of flower plants. The New York Botanical Garden, Bronx, NY

    Google Scholar 

  • Dawson JH, Musselman LJ, Wolswinkel P, Dörr I (1994) Biology and control of Cuscuta. Rev Weed Sci 6:265–317

    Google Scholar 

  • dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339

    Article  PubMed  Google Scholar 

  • Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phytogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds). Molecular systematics of plants. Chapman and Hall, London, UK, pp 14–35

    Google Scholar 

  • Downie SR, Olmstead RG, Zurawski G, Soltis DE, Soltis PS, Watson JC, Palmer JD (1991) Six independant losses of the chloroplast DNA rpl2 intron in Dicotyledons: molecular and phylogenetic implications. Evolution 45:1245–1259

    Google Scholar 

  • Downie SR, Katz-Downie DS, Wolfe KH, Calie PJ, Palmer JD (1994) Structure and evolution of the largest chloroplast genome (ORF2280): internal plasticity and multiple gene loss during angiosperm evolution. Curr Genet 25:367–378

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Doyle JJ, Doyle JL, Palmer JD (1995) Multiple independent losses of two genes and one intron from legume chloroplast genomes. Syst Bot 20:272–294

    Google Scholar 

  • Dujon B (1989) Group I introns as mobile genetic elements: facts and mechanistic speculations: a review. Gene 82:91–114

    Article  PubMed  Google Scholar 

  • Engelmann G (1895) Systematic arrangement of the species of the genus Cwcuta with critical remarks on old species and descriptions of new ones. Trans Acad Sci St Louis 1:453–523

    Google Scholar 

  • Fink GR (1987) Pseudogenes in yeast? Cell 49:5–6

    Article  PubMed  Google Scholar 

  • Freyer R, Neckermann K, Maier RM, Kössel H (1995) Structural and functional analysis of plastid genomes from parasitic plants: loss of an intron within the genus Cuscuta. Curr Genet 27:580–586

    Article  PubMed  Google Scholar 

  • Gielly L, Taberlet P (1994) The use of chloroplast DNA to resolve plant phytogenies: noncoding versus rbcL sequences. Mol Biol Evol 11:769–777

    PubMed  Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wölf S, Hellwig FH (2003) Analysis of Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Biol Evol 20:14499–14505

    Google Scholar 

  • Goremykin VV, Hirsch-Ernst KI, Wölf S, Hellwig FH (2004) The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 21:1445–1454

    Article  PubMed  Google Scholar 

  • Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206

    Article  PubMed  Google Scholar 

  • Graham S.W., R. G. Olmstead. 2000. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am J Bot 87:1712–1730

    PubMed  Google Scholar 

  • Guedeney G, Corneille S, Cuine S, Peltier G (1996) Evidence for an association of ndhB, ndhJ gene products and feredoxin-NADP-reductase as components of a chloroplastic NAD(P)H dehydrogenase complex. FEBS Lett 378:277–280

    Article  PubMed  Google Scholar 

  • Haberhausen G, Zetsche K (1994) Functional loss of all ndh genes in an otherwise relatively unaltered plastid genome of the holoparasitic flowering plant Cuscuta reflexa. Plant Mol Biol 24:217–222

    Article  PubMed  Google Scholar 

  • Haberhausen G, Valentin K, Zetsche K (1992) Organization and sequence of photosynthetic genes from the plastid genome of the holoparasitic flowering plant Cuscuta reflexa. Mol. Gen Genet 232:154–161

    Article  PubMed  Google Scholar 

  • Hibberd JM, Bungard RA, Press MC, Jeschke WD, Scholes JD, Quick WP (1998) Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205:506–513

    Article  Google Scholar 

  • Hiratsuka J, Shimada H, Whitter R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY,. Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes account for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    PubMed  Google Scholar 

  • Hupfer H, Swaitek M, Hornung S, Hermann RG, Maier RM, Chiu WL, Sears B (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable Euoenothera plastomes. Mol Gen Genet 263:581–585

    Article  PubMed  Google Scholar 

  • Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330

    PubMed  Google Scholar 

  • Krause K, Berg S, Krupinska K (2003) Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and of the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta 216:815–823

    PubMed  Google Scholar 

  • Kudla JG, Igloi GL, Metzlaf M, Hagemann R, Kössel H (1992) RNA editing in tobacco chloroplasts leads to the formation of a translatable psbL mRNA by C to U substitution within the initiation codon. EMBO J 11:1099–1103

    PubMed  Google Scholar 

  • Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley, CA

    Google Scholar 

  • Machado MA, Zetsche K (1990) A structural, functional, and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181:91–96

    Article  Google Scholar 

  • Maier RM, Neckermann K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence, and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  PubMed  Google Scholar 

  • Matsubayashi T, Wakasugi T, Shinozaki K, Yamagushi-Shinozaki K, Zaita N, Hidaka T, Meng BY, Ohto C, Tanaka M, Kato A, Maruyama T, Sugiura M (1987) Six chloroplast genes (ndhA-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: determination of splice sites in ndhA and ndhB pre-mRNAs. Mol Gen Genet 210:385–393

    Article  PubMed  Google Scholar 

  • McDade LA, Moody ML (1999) Phylogenetic relationships among Acanthaceae: evidence from noncoding trnL-trnF chloroplast DNA sequences. Am J Bot 86:70–80

    Google Scholar 

  • Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns: a review. Gene 82:5–30

    Article  PubMed  Google Scholar 

  • Nixon PJ (2000) Chlororespiration. Philos Trans R Soc London Ser B 355:1541–1547

    Article  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genom 266:740–746

    Article  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozekj H (1986) Chloroplast gene organization deduced from complete sequence of liverworth Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  Google Scholar 

  • Olmstead RG, Palmer JD (1992) A chloroplast DNA phylogeny of the Solanaceae: subfamilial relationships and character evolution. Ann Mo Bot Gard 79:346–360

    Google Scholar 

  • Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis. Am J Bot 81:1205–1224

    Google Scholar 

  • Olmstead RG, Kim KJ, Jansen RK, Wagstaff SJ (2000) The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. Mol Phylogenet Evol 16:96–112

    Article  PubMed  Google Scholar 

  • Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361

    PubMed  Google Scholar 

  • Palmer JD (1985) Comparative organization of chloroplast genomes. Ann Rev Genet 19:325–354

    Article  PubMed  Google Scholar 

  • Palmer JD (1990) Contrasting modes and tempos of genome evolution in land plants organelles. Trends Genet 6:115–120

    Article  PubMed  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds). Cell culture and somatic cell genetics of plants, Vol. 7A. Academic Press, San Diego, California, USA, pp. 5–53

    Google Scholar 

  • Palmer JD, Stein DB (1986) Conservation of chloroplast genome structure among vascular plants. Curr Genet 10:823–833

    Article  Google Scholar 

  • Panda MM, Choudhury NK (1992) Effect of irradiance and nutrients on chlorophyll and carotenoid content and Hill reaction activity of Cuscuta reflexa. Photosynthetica 26:585–592

    Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    PubMed  Google Scholar 

  • Peltier G, Schmidt GW (1991) Chlororespiration: an adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88:4791–4795

    PubMed  Google Scholar 

  • Plunkett GM, Downie SR (2000) Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Syst Bot 25:648–667

    Google Scholar 

  • Posno M, van Vliet A, Groot GSP (1986) Localization of chloroplast ribosomal protein genes on Spirodela oligorhiza chloroplast DNA. Curr Genet 10:923–930

    Article  Google Scholar 

  • Richards CM, Hinman SB, Boyer CD, Hardison RC (1991) Survey of plastid RNA abundance during tomatofruit ripening: the amounts of rna from the ORF2280 region increase in chromoplasts. Plant Mol Biol 17:1179–1188

    Article  PubMed  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopisis thaliana. DNA Res 6:283–290

    PubMed  Google Scholar 

  • Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, deBruijn AJ, Sullivan S, Qiu YL (2000) Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362

    Article  PubMed  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986a) The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    Google Scholar 

  • Shinozaki K, Deno H, Sugita M, Kuramitsu S, Sugiura M (1986b) Intron in the gene for the ribosomal protein S16 of tobacco chloroplast and its conserved boundary sequences. Mol Gen Genet 202:1–5

    Article  Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (2001) The plastide chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    Article  PubMed  Google Scholar 

  • Spielman A, Roux E, von Allmen JM, Stutz E (1988) The soybean chloroplast genome: complete sequence of the rps19 gene, including flanking parts containing exon 2 of rpl2 (upstream), but lacking rpl22 (downstream). Nucleic Acids Res 16:1199

    PubMed  Google Scholar 

  • Stefanovic’ S, Olmstead RG (2004) Testing the phylogenetic position of a parasitic plant (Cuscuta, Convolvulaceae, Asteridae): Bayesian inference and the parametric bootstrap on data drawn from three genomes. Syst Biol 53:384–399

    Article  PubMed  Google Scholar 

  • Stefanovic’ S, Krueger L, Olmstead RG (2002) Monophyly of the Convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast loci. Am J Bot 89:1510–1522

    Google Scholar 

  • Stefanovic’ S, Austin DF, Olmstead RG (2003) Classification of Convolvulaceae: a phylogenetic approach. Syst Bot 28:791–806

    Google Scholar 

  • Stefanovic’ S, Rice DW, Palmer JD (2004) Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? BMC Evol Biol 4:35

    Article  PubMed  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    Article  PubMed  Google Scholar 

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York, New York, USA

    Google Scholar 

  • van der Kooij TAW, Krause K, Dörr I, Krupinska K (2000) Molecular, functional and ultrastructural characterization of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210:701–707

    Article  PubMed  Google Scholar 

  • Wakasugi T, Tsudzuki T, Ito S, Nakashima K, Tsudzuk T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinns thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    PubMed  Google Scholar 

  • Wakasugi T, Sugita M, Tsudzuki T, Sugiura M (1998) Updated gene map of tobacco chloroplast DNA. Plant Mol Biol Reporter 16:231–241

    Article  Google Scholar 

  • Wolfe AD, Liston A (1998) Contribution of PCR-based methods to plant systematics and evolutionary biology. In: Soltis PS, Soltis DE, Doyle JJ (eds). Molecular systematics of plants, II, DNA sequencing. Kluwer Academic Publishers, Boston, MA, USA, pp 43–86

    Google Scholar 

  • Wolfe KH (1994) Similarity of plastid ORF2280 to the CDC48 family: a proteolytic ATPase? Curr Genet 25:379–383

    Article  PubMed  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    PubMed  Google Scholar 

  • Young ND, Steiner KE, dePamphilis CW (1999) The evolution of parasitism in Scrophulariaceae/Orobanchaceae: plastid gene sequences refute an evolutionary transition series. Ann Mo Bot Gard 86:876–893

    Google Scholar 

  • Yuncker TG (1932) The genus Cuscuta. Mem Torrey Bot Club 18:113–331

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1984) Junction of the large single copy region and the inverted repeat in Spinacea oleracea and Nicotiana debneyi chloroplst DNA: sequence of the genes for tRNAHis and the ribosomal proteins S19 and L2. Nucleic Acids Res 12:6547–6558

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dave Tank, Jeff Palmer, Joel McNeal, as well as Claude dePamphilis, and an anonymous reviewer for critical comments on the manuscript. This work was supported by the Karling Graduate Student Research Award from the Botanical Society of America, and the Research Award for Graduate Students from the American Society of Plant Taxonomists to S.S., the NSF Doctoral Dissertation Improvement grant DEB-0073396 to R.G.O. for S.S., and the NSF grant DEB-950984 to R.G.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saša Stefanović.

Additional information

[Reviewing Editor: Dr. Debashish Bhattacharya]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanović, S., Olmstead, R.G. Down the Slippery Slope: Plastid Genome Evolution in Convolvulaceae. J Mol Evol 61, 292–305 (2005). https://doi.org/10.1007/s00239-004-0267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0267-5

Keywords

Navigation