Skip to main content
Log in

Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The enzymes gibberellin (GA) 20-oxidase and 3-oxidase are major sites of regulation in GA biosynthesis. We have characterised one member of each of the gene families encoding these enzymes that are highly expressed in elongating stems and in developing and germinating grains of wheat and are therefore likely to have prominent developmental roles in these tissues. We mapped the three homoeologues of the GA 20-oxidase gene TaGA20ox1 to chromosomes 5BL, 5DL and 4AL. TaGA20ox1 is expressed mainly in the nodes and ears of the elongating stem, and also in developing and germinating embryos. Expression in the nodes, ears and germinating embryos is predominantly from the A and D genomes. Each homoeologous cDNA encodes a functional enzyme that catalyses the multi-step conversions of GA12–GA9, and GA53–GA20. Time course and enzyme kinetic studies indicate that the initial oxidation steps from GA12 and GA53 to the free alcohol forms of GA15 and GA44, respectively, occur rapidly but that subsequent steps occur more slowly. The intermediate GA19 has an especially low affinity for the enzyme, consistent with its accumulation in wheat tissues. The three homoeologous cDNAs for the 3-oxidase gene TaGA3ox2 encode functional enzymes, one of which was shown to possess low levels of 2β-hydroxylase, 2,3-desaturase, 2,3-epoxidase and even 13-hydroxylase activities in addition to 3β-hydroxylase activity. In contrast to TaGA20ox1, TaGA3ox2 is expressed in internodes, as well as nodes and the ear of the elongating stem. It is also highly expressed in developing and germinated embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

GA:

Gibberellin

GC-MS:

Combined gas chromatography-mass spectrometry

HPLC:

High performance liquid chromatography

QTL:

Quantitative trait locus

References

  • Aach H, Bode H, Robinson DG, Graebe JE (1997) ent-Kaurene synthase is located in proplastids of meristematic shoot tissues. Planta 202:211–219

    Article  CAS  Google Scholar 

  • Albone KS, Gaskin P, MacMillan J, Phinney BO, Willis CL (1990) Biosynthetic origin of gibberellin A3 and gibberellin A7 in cell-free preparations from seeds of Marah macrocarpus and Malus domestica. Plant Physiol 94:132–142

    PubMed  CAS  Google Scholar 

  • Appleford NEJ, Lenton JR (1991) Gibberellins and leaf expansion in near-isogenic wheat lines containing Rht1 and Rht3 dwarfing alleles. Planta 183:229–236

    Article  CAS  Google Scholar 

  • Appleford NEJ, Phillips AL, Devos KM, Gale MD, Hedden P, Lenton JR (1998) Wheat GA 20-oxidases: cloning, mapping and expression. 16th International Conference on Plant Growth Substances. Makuhari, p 142

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci 52:143–150

    Article  CAS  Google Scholar 

  • Austin RB (1999) Yield of wheat in the United Kingdom: Recent advances and prospects. Crop Sci 39:1604–1610

    Article  Google Scholar 

  • Bartels D, Thompson R (1983) The characterization of cDNA clones coding for wheat storage proteins. Nucleic Acids Res 11:2961–2977

    Article  PubMed  CAS  Google Scholar 

  • Carrera E, Bou J, Garcia-Martinez JL, Prat S (2000) Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J 22:247–256

    Article  PubMed  CAS  Google Scholar 

  • Coles JP, Phillips AL, Croker SJ, García-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556

    Article  PubMed  CAS  Google Scholar 

  • Croker SJ, Hedden P, Lenton JR, Stoddart JL (1990) Comparison of gibberellins in normal and slender barley seedlings. Plant Physiol 94:194–200

    PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Liu C, Gale MD (1992) RFLP-based genetic map of the homoeologous group-3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    Article  CAS  Google Scholar 

  • Fujioka S, Yamane H, Spray CR, Gaskin P, Macmillan J, Phinney BO, Takahashi N (1988) Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol 88:1367–1372

    PubMed  CAS  Google Scholar 

  • Gaskin P, MacMillan J (1992) GC-MS of the gibberellins and related compounds: methodology and a library of spectra. Cantock’s Enterprises, Bristol, UK

    Google Scholar 

  • Green LS, Faergestad EM, Poole A, Chandler PM (1997) Grain development mutants of barley—alpha-amylase production during grain maturation and its relation to endogenous gibberellic acid content. Plant Physiol 114:203–212

    PubMed  CAS  Google Scholar 

  • Großelindemann E, Lewis MJ, Hedden P, Graebe JE (1992) Gibberellin biosynthesis from gibberellin A12-aldehyde in a cell-free system from germinating barley (Hordeum vulgare L., cv. Himalaya) embryos. Planta 188:252–257

    Article  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  PubMed  CAS  Google Scholar 

  • Huang SS, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol 118:773–781

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98:8909–8914

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (2003) Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J 35:104–115

    Article  PubMed  CAS  Google Scholar 

  • Lange T, Hedden P, Graebe JE (1994) Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci USA 91:8552–8556

    Article  PubMed  CAS  Google Scholar 

  • Lange T, Robatzek S, Frisse A (1997) Cloning and expression of a gibberellin 2β, 3β-hydroxylase cDNA from pumpkin endosperm. Plant Cell 9:1459–1467

    Article  PubMed  CAS  Google Scholar 

  • Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel’s stem length gene (Le) encodes a gibberellin 3β-hydroxylase. Plant Cell 9:1435–1443

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice–wheat–barley comparison. Funct Integr Genomics 4:84–93

    Article  PubMed  CAS  Google Scholar 

  • Lin JT, Stafford AE (1987) Comparison of the endogenous gibberellins in the shoots and roots of vernalized and non-vernalized Chinese Spring wheat seedlings. Phytochemistry 26:2485–2488

    Article  CAS  Google Scholar 

  • Liu CJ, Atkinson MD, Chinoy CN, Devos KM, Gale MD (1992) Nonhomologous translocations between group-4, group-5 and group-7 chromosomes within wheat and rye. Theor Appl Genet 83:305–312

    Article  Google Scholar 

  • MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi and bacteria. J Plant Growth Regul 20:387–442

    Article  CAS  Google Scholar 

  • MacMillan J, Ward DA, Phillips AL, Sánchez-Beltrán MJ, Gaskin P, Lange T, Hedden P (1997) Gibberellin biosynthesis from gibberellin A12-aldehyde in endosperm and embryos of Marah macrocarpus. Plant Physiol 113:1369–1377

    Article  PubMed  CAS  Google Scholar 

  • Martin DN, Proebsting WM, Hedden P (1997) Mendel’s dwarfing gene: cDNAs from the Le alleles and function of the expressed proteins. Proc Natl Acad Sci USA 94:8907–8911

    Article  PubMed  CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89

    Google Scholar 

  • Mochida K, Yamazaki Y, Ogihara Y (2004) Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genomics 270:371–377

    Article  CAS  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: Rice “Green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  PubMed  CAS  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NEJ, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Rademacher W (2000) Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909–913

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schliemann W, Schneider G (1993) Gibberellins in Gramineae. Plant Growth Regul 12:91–98

    Article  CAS  Google Scholar 

  • Sears ER (1965) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburgh, pp 29–58

    Google Scholar 

  • Sears ER (1976) A synthetic hexaploid with fragile rachis. Wheat Inf Serv 41(42):31–32

    Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  PubMed  CAS  Google Scholar 

  • Smith VA, Gaskin P, Macmillan J (1990) Partial purification and characterization of the gibberellin A20 3β-hydroxylase from seeds of Phaseolus vulgaris. Plant Physiol 94:1390–1401

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Ellis M, Robertson M, Ali S, Lenton JR, Chandler PM (2004) Isolation of gibberellin metabolic pathway genes from barley and comparative mapping in barley, wheat and rice. Theor Appl Genet 109:847–855

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    Article  PubMed  CAS  Google Scholar 

  • Spray CR, Kobayashi M, Suzuki Y, Phinney BO, Gaskin P, Macmillan J (1996) The dwarf-1 (d1) mutant of Zea mays blocks 3 steps in the gibberellin-biosynthetic pathway. Proc Natl Acad Sci USA 93:10515–10518

    Article  PubMed  CAS  Google Scholar 

  • Stafford AE, Lin JT, Murofushi N (1993) Effect of vernalizing conditions on the concentrations of endogenous gibberellins in wheat seedlings. Biosci Biotechnol Biochem 57:715–719

    Article  CAS  Google Scholar 

  • Swain SM, Reid JB, Kamiya Y (1997) Gibberellins are required for embryo growth and seed development in pea. Plant J 12:1329–1338

    Article  CAS  Google Scholar 

  • Thomas P (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201–5205

    Article  PubMed  CAS  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  PubMed  CAS  Google Scholar 

  • Ward JL, Jackson GJ, Beale MH, Gaskin P, Hedden P, Mander LN, Phillips AL, Seto H, Talon M, Willis CL, Wilson TM, Zeevaart JAD (1997) Stereochemistry of the oxidation of gibberellin 20-alcohols, GA15 and GA44, to 20-aldehydes by gibberellin 20-oxidases. Chem Commun 13–14

  • Webb SE, Appleford NEJ, Gaskin P, Lenton JR (1998) Gibberellins in internodes and ears of wheat containing different dwarfing alleles. Phytochemistry 47:671–677

    Article  CAS  Google Scholar 

  • White CN, Proebsting WM, Hedden P, Rivin CJ (2000) Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol 122:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Williams J, Phillips AL, Gaskin P, Hedden P (1998) Function and substrate specificity of the gibberellin 3β-hydroxylase encoded by the Arabidopsis GA4 gene. Plant Physiol 117:559–563

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol 41:251–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grant in aid from the Biotechnology and Biological Sciences Research Council of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hedden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appleford, N.E., Evans, D.J., Lenton, J.R. et al. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223, 568–582 (2006). https://doi.org/10.1007/s00425-005-0104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0104-0

Keywords

Navigation