Skip to main content
Log in

Complete Chloroplast Genome Sequence of Glycine max and Comparative Analyses with other Legume Genomes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Lack of complete chloroplast genome sequences is still one of the major limitations to extending chloroplast genetic engineering technology to useful crops. Therefore, we sequenced the soybean chloroplast genome and compared it to the other completely sequenced legumes, Lotus and Medicago. The chloroplast genome of Glycine is 152,218 basepairs (bp) in length, including a pair of inverted repeats of 25,574 bp of identical sequence separated by a small single copy region of 17,895 bp and a large single copy region of 83,175 bp. The genome contains 111 unique genes, and 19 of these are duplicated in the inverted repeat (IR). Comparisons of Glycine, Lotus and Medicago confirm the organization of legume chloroplast genomes based on previous studies. Gene content of the three legumes is nearly identical. The rpl22 gene is missing from all three legumes, and Medicago is missing rps16 and one copy of the IR. Gene order in Glycine, Lotus, and Medicago differs from the usual gene order for angiosperm chloroplast genomes by the presence of a single, large inversion of 51 kilobases (kb). Detailed analyses of repeated sequences indicate that many of the Glycine repeats that are located in the intergenic spacer regions and introns occur in the same location in the other legumes and in Arabidopsis, suggesting that they may play some functional role. The presence of small repeats of psbA and rbcL in legumes that have lost one copy of the IR indicate that this loss has only occurred once during the evolutionary history of legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • S.F. Altschul T.L. Madden A.A. Schaffer J.H. Zhang Z. Zhang W. Miller D.J. Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucl. Acids Res. 25 3389–3402 Occurrence Handle10.1093/nar/25.17.3389 Occurrence Handle9254694

    Article  PubMed  Google Scholar 

  • C.M. Bowman T. Dyer (1986) ArticleTitleThe location and possible evolutionary significance of small dispersed repeats in wheat ctDNA Curr. Genet. 10 931–941 Occurrence Handle10.1007/BF00398291

    Article  Google Scholar 

  • Chebolu, S. and Daniell, H. 2005. Chloroplast derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Trends Microbiol Immunol (in press).

  • J.L. Corriveau A.W. Coleman (1988) ArticleTitleRapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species Amer. J. Bot. 75 1443–1458

    Google Scholar 

  • M.E. Cosner R.K. Jansen J.D. Palmer S.R. Downie (1997) ArticleTitleThe highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): Multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families Curr. Genet. 31 419–429 Occurrence Handle10.1007/s002940050225 Occurrence Handle9162114

    Article  PubMed  Google Scholar 

  • H. Daniell (2002) ArticleTitleMolecular strategies for gene containment in transgenic crops Nat. Biotechnol. 20 581–586 Occurrence Handle10.1038/nbt0602-581 Occurrence Handle12042861

    Article  PubMed  Google Scholar 

  • H. Daniell O. Carmona-Sanchez B.B. Burns (2004a) Chloroplast-derived vaccine antibodies, biopharmaceuticals, and edible vaccines in transgenic plants engineered via the chloroplast genome S. Schillberg (Eds) Molecular Farming Wiley–VCH Verlag publishers Germany 113–133

    Google Scholar 

  • H. Daniell P.R. Cohill S. Kumar N. Dufourmantel (2004b) Chloroplast Genetic Engineering H. Daniell C.D. Chase (Eds) Molecular Biology and Biotechnology of Plant Organelles Springer Publishers Netherlands 443–490

    Google Scholar 

  • H. Daniell M. Khan L. Allison (2002) ArticleTitleMilestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology Trends Plant Sci. 7 84–91 Occurrence Handle10.1016/S1360-1385(01)02193-8 Occurrence Handle11832280

    Article  PubMed  Google Scholar 

  • H. Daniell S. Kumar N. Duformantel (2005) ArticleTitleBreakthrough in chloroplast genetic engineering of agronomically important crops Trends Biotechnol. 23 IssueID5 238–245 Occurrence Handle10.1016/j.tibtech.2005.03.008 Occurrence Handle15866001

    Article  PubMed  Google Scholar 

  • H. Daniell R. Datta S. Varma S. Gray S.B. Lee (1998) ArticleTitleContainment of herbicide resistance through genetic engineering of the chloroplast genome Nat. Biotechnol. 16 345–348 Occurrence Handle10.1038/nbt0498-345 Occurrence Handle9555724

    Article  PubMed  Google Scholar 

  • H. Daniell S.B. Lee T. Panchal P.O. Wiebe (2001) ArticleTitleExpression of cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts J. Mol. Biol. 311 1001–1009 Occurrence Handle10.1006/jmbi.2001.4921 Occurrence Handle11531335

    Article  PubMed  Google Scholar 

  • B. DeCosa W. Moar S.B. Lee M. Miller H. Daniell (2001) ArticleTitleOverexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals Nat. Biotechnol. 19 71–74 Occurrence Handle10.1038/83559 Occurrence Handle11135556

    Article  PubMed  Google Scholar 

  • G. DeGray K. Rajasekaran F. Smith J. Sanford H. Daniell (2001) ArticleTitleExpression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi Plant Physiol. 127 852–862 Occurrence Handle10.1104/pp.127.3.852 Occurrence Handle11706168

    Article  PubMed  Google Scholar 

  • A. Dhingra A.R. Portis H. Daniell (2004) ArticleTitleEnhanced translation of a chloroplast expressed rbcS gene restores SSU levels and photosynthesis in nuclear antisense RbcS plants Proc. Natl. Acad. Sci. USA 101 6315–6320 Occurrence Handle10.1073/pnas.0400981101 Occurrence Handle15067115

    Article  PubMed  Google Scholar 

  • J.J. Doyle J.L. Doyle J.D. Palmer (1995) ArticleTitleMultiple independent losses of two genes and one intron from legume chloroplast genomes Syst. Bot. 20 272–294

    Google Scholar 

  • J.J. Doyle J.L. Doyle J.A. Ballenger J.D. Palmer (1996) ArticleTitleThe distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae Mol. Phylog. Evol. 5 429–438 Occurrence Handle10.1006/mpev.1996.0038

    Article  Google Scholar 

  • N. Dufourmantel B. Pelissier F. Garçon J.M. Peltier G. Tissot (2004) ArticleTitleGeneration of fertile transplastomic soybean Plant Mol. Biol. 55 IssueID4 479–489 Occurrence Handle10.1007/s11103-004-0192-4 Occurrence Handle15604694

    Article  PubMed  Google Scholar 

  • L. Elnitski C. Riemer H. Petrykowska L. Florea S. Schwartz W. Miller R. Hardison (2002) ArticleTitlePipTools: A computational toolkit to annotate and analyze pairwise comparisons of genomic sequences Genomics 80 681–690 Occurrence Handle10.1006/geno.2002.7018 Occurrence Handle12504859

    Article  PubMed  Google Scholar 

  • B. Ewing P. Green (1998) ArticleTitleBase-calling of automated sequencer traces using phred II. Error probabilities Genome Res. 8 186–194 Occurrence Handle9521922

    PubMed  Google Scholar 

  • Fernandez-San Millan, A., Mingo-Castel, A. and Daniell, H. 2003. Chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol. J. 1: 71--79.

  • J.S. Gantt S.L. Baldauf P.J. Calie N.F. Weeden J.D. Palmer (1991) ArticleTitleTransfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron EMBO J. 10 3073–3078 Occurrence Handle1915281

    PubMed  Google Scholar 

  • S.E. Goulding R.G. Olmstead C.W. Morden K.H. Wolfe (1996) ArticleTitleEbb and flow of the chloroplast inverted repeat Mol. Gen. Genet. 252 195–206 Occurrence Handle10.1007/BF02173220 Occurrence Handle8804393

    Article  PubMed  Google Scholar 

  • C. Guda S.B. Lee H. Daniell (2000) ArticleTitleStable expression of biodegradable protein based polymer in tobacco chloroplasts Plant Cell Rep. 19 257–262 Occurrence Handle10.1007/s002990050008

    Article  Google Scholar 

  • R. Hagemann (2004) The sexual inheritance of plant organelles H Daniell C Chase (Eds) Molecular Biology and Biotechnology of Plant Organelles Springer Publishers Dordrecht, The Netherlands 93–113

    Google Scholar 

  • F. Herdenberger D.T.N. Pillay A. Steinmetz (1990) ArticleTitleSequence of the trnH gene and the inverted repeat structure deletion of the broad bean chloroplast genome Nucl Acids Res 18 1297 Occurrence Handle2320425

    PubMed  Google Scholar 

  • V.D. Hipkins K.A. Marshall D.B. Neale W.H. Rottmann S.H. Strauss (1995) ArticleTitleA mutation hotspot in the chloroplast genome of a conifer (Douglas-Fir, Pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated transfer-RNA gene Curr. Genet. 27 572–579 Occurrence Handle10.1007/BF00314450 Occurrence Handle7553944

    Article  PubMed  Google Scholar 

  • C.J. Howe (1985) ArticleTitleThe endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda Curr. Genet. 10 139–145 Occurrence Handle10.1007/BF00636479 Occurrence Handle2970310

    Article  PubMed  Google Scholar 

  • H. Hupfer M. Swaitek S. Hornung R.G. Herrmann R.M. Maier W.L. Chiu B. Sears (2000) ArticleTitleComplete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome 1 of the five distinguishable Euoenthera plastomes Mol. Gen. Genet. 263 581–585 Occurrence Handle10.1007/s004380051204 Occurrence Handle10852478

    Article  PubMed  Google Scholar 

  • S. Iamtham A. Day (2000) ArticleTitleRemoval of antibiotic resistance genes from transgenic tobacco plastids Nat. Biotechnol. 18 1172–1176 Occurrence Handle10.1038/81161 Occurrence Handle11062436

    Article  PubMed  Google Scholar 

  • R.K. Jansen L.A. Raubeson J.L. Boore C.W. dePamphilis T.W. Chumley R.C. Haberle S.K. Wyman A.J. Alverson R. Peery S.J. Herman H.M. Fourcade J.V. Kuehl J.R. McNeal J. Leebens-Mack L. Cui (2005) ArticleTitleMethods for obtaining and analyzing chloroplast genome sequences Meth. Enzymol. 395 348–384 Occurrence Handle10.1016/S0076-6879(05)95020-9 Occurrence Handle15865976

    Article  PubMed  Google Scholar 

  • T. Kato T. Kaneko S. Sato Y. Nakamura S. Tabata (2000) ArticleTitleComplete structure of the chloroplast genome of a legume, Lotus japonicus DNA Res. 7 323–330 Occurrence Handle10.1093/dnares/7.6.323 Occurrence Handle11214967

    Article  PubMed  Google Scholar 

  • E.B. Knox J.D. Palmer (1998) ArticleTitleChloroplast DNA evidence on the origin and radiation of the giant lobelias in eastern Africa Syst. Bot. 23 109–149

    Google Scholar 

  • M. Kota H. Daniel S. Varma S.F. Garczynski F. Gould M.J. William (1999) ArticleTitleOverexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects Proc. Natl. Acad. Sci. USA 96 1840–1845 Occurrence Handle10.1073/pnas.96.5.1840 Occurrence Handle10051556

    Article  PubMed  Google Scholar 

  • S. Kumar A. Dhingra H. Daniell (2004a) ArticleTitlePlastid expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance Plant Physiol. 136 IssueID1 2843–2854 Occurrence Handle10.1104/pp.104.045187

    Article  Google Scholar 

  • S. Kumar A. Dhingra H. Daniell (2004b) ArticleTitleManipulation of gene expression facilitates cotton plastid transformation of cotton by somatic embryogenesis and maternal inheritance of transgenes Plant Mol. Biol. 56 IssueID2 203–216 Occurrence Handle10.1007/s11103-004-2907-y

    Article  Google Scholar 

  • S. Kurtz J.V. Choudhuri E. Ohlebusch C. Schleiermacher J. Stoye R. Giegerich (2001) ArticleTitleREPuter: the manifold applications of repeat analysis on a genomic scale Nucl. Acids Res. 29 4633–4642 Occurrence Handle10.1093/nar/29.22.4633 Occurrence Handle11713313

    Article  PubMed  Google Scholar 

  • M. Lavin J.J. Doyle J.D. Palmer (1990) ArticleTitleEvolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae Evolution 44 390–402

    Google Scholar 

  • S.B. Lee H.B. Kwon S.J. Kwon S.C. Park M.J. Jeong S.E. Han H. Daniell (2003) ArticleTitleAccumulation of trehalose within transgenic chloroplasts confers drought tolerance Mol. Breed. 11 1–13 Occurrence Handle10.1023/A:1022100404542

    Article  Google Scholar 

  • Lee, S.M., Kang, K., Chung, H., Yoo, S.H., Xu, X.M., Lee,␣S.B., Cheong, J.J., Daniell, H., Kim, M., 2005. Plastid transformation in the monocotyledonous crop rice (Oryza sativa) and transmission of transgenes to their progeny. Mol. Breed. in press.

  • S. Leelavathi V.S. Reddy (2003) ArticleTitleChloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors Mol. Breed. 11 49–58 Occurrence Handle10.1023/A:1022114427971

    Article  Google Scholar 

  • S. Leelavathi N. Gupta S. Maiti A. Ghosh V.S. Reddy (2003) ArticleTitleOverproduction of an alkali- and thermo-stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme Mol. Breed. 11 59–67 Occurrence Handle10.1023/A:1022168321380

    Article  Google Scholar 

  • A. Lossl C. Eibl H.J. Harloff C. Jung H.U. Koop (2003) ArticleTitlePolyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction Plant Cell Rep. 21 891–899 Occurrence Handle12789507

    PubMed  Google Scholar 

  • R.M. Maier K. Neckermann G.L. lgloi H. Kossel (1995) ArticleTitleComplete sequence of the maize chloroplast genome: Gene content, hotspots of divergence and fine tuning of genetic information by transcript editing J. Mol. Biol. 251 614–628 Occurrence Handle10.1006/jmbi.1995.0460 Occurrence Handle7666415

    Article  PubMed  Google Scholar 

  • R.M. Maier Schmitz-Linneweber (2004) Plastid genomes H. Daniell C.D. Chase (Eds) Molecular Biology and Biotechnology of Plant Organelles Springer publishers Netherlands 115–150

    Google Scholar 

  • Y. Matsuoka Y. Yamazaki Y. Ogihara K. Tsunewaki (2002) ArticleTitleWhole chloroplast genome comparison of rice, maize, and wheat: Implications for chloroplast gene diversification and phylogeny of cereals Mol. Biol. Evol. 19 2084–2091 Occurrence Handle12446800

    PubMed  Google Scholar 

  • J.E. Maul J.W. Lilly L. Cui C.W. dePamphilis W. Miller E.H. Harris D.B. Stern (2002) ArticleTitleThe Chlamydomonas reinhardtii plastid chromosome: Islands of genes in a sea of repeats Plt. Cell 14 1–22 Occurrence Handle10.1105/tpc.140110

    Article  Google Scholar 

  • K.E. McBride Z. Svab D.J. Schaaf P.S. Hogan D.M. Stalker P. Maliga (1995) ArticleTitleAmplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco Bio/Technology 13 362–365 Occurrence Handle10.1038/nbt0495-362 Occurrence Handle9634777

    Article  PubMed  Google Scholar 

  • B.G. Milligan J.N. Hampton J.D. Palmer (1989) ArticleTitleDispersed repeats and structural reorganization in subclover chloroplast DNA Mol. Biol. Evol. 6 355–368 Occurrence Handle2615639

    PubMed  Google Scholar 

  • A. Molina S. Herva-Stubbs H. Daniell A.M. Mingo-Castel J. Veramendi (2004) ArticleTitleHigh yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts Plt. Biotechnol. J. 2 141–153 Occurrence Handle10.1046/j.1467-7652.2004.00057.x

    Article  Google Scholar 

  • K. Ohyama H. Fukuzawa T. Kohchi H. Shirai T. Sano S. Sano K. Umesono Y. Shiki M. Takeuchi Z. Chang S. Aota H. Inokuchi H. Ozeki (1986) ArticleTitleChloroplast gene organization deduced from complete sequence of Liverwort Marchantia-polymorpha chloroplast DNA Nature 322 572–574 Occurrence Handle10.1038/322572a0

    Article  Google Scholar 

  • Y. Nagano R. Matsuno Y. Sasaki (1991) ArticleTitleSequence and transcriptional analysis of the gene cluster trnQ-zfpA-psaI-ORF231-petA in pea chloroplasts Curr. Genet. 20 431–436 Occurrence Handle10.1007/BF00317074 Occurrence Handle1807835

    Article  PubMed  Google Scholar 

  • J.D. Palmer (1985) Evolution of chloroplast and mitochondrial DNA in plants and algae RJ MacIntyre (Eds) Monographs in Evolutionary Biology: Molecular Evolutionary Genetics Plenum Press New York 131–240

    Google Scholar 

  • J.D. Palmer (1991) Plastid chromosomes: structure and evolution RG Hermann (Eds) The Molecular Biology of Plastids. Cell Culture and Somatic Cell Genetics of Plants vil 7A Springer-Verlag Vienna 5–53

    Google Scholar 

  • J.D. Palmer R.K. Jansen H. Michaels J. Manhart M. Chase (1988) ArticleTitleChloroplast DNA variation and plant phylogeny Ann. Missouri. Bot. Gard. 75 1180–1206

    Google Scholar 

  • J.D. Palmer J.M. Nugent L.A. Herbon (1987a) ArticleTitleUnusual structure of Geranium chloroplast DNA – A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and 2 repeat families Proc. Natl. Acad. Sci. USA 84 769–773

    Google Scholar 

  • J.D. Palmer B. Osorio J. Aldrich W.F. Thompson (1987) ArticleTitleChloroplast DNA evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements Curr. Genet. 11 275–286 Occurrence Handle10.1007/BF00355401

    Article  Google Scholar 

  • J.D. Palmer B. Osorio W.F. Thompson (1988) ArticleTitleEvolutionary significance of inversions in legume chloroplast DNAs Curr. Genet. 14 65–74 Occurrence Handle10.1007/BF00405856

    Article  Google Scholar 

  • R.T. Pennington B.B. Klitgaard H. Ireland M. Lavin (2000) New insights into floral evolution of basal Papilionoideae from molecular phylogenies PS Herendeen A Bruneau (Eds) Advances in Legume Systematics, part 9 Kew UK 233–248

    Google Scholar 

  • A.S. Perry S. Brennan D.J. Murphy K.H. Wolfe (2002) ArticleTitleEvolutionary re-organisation of a large operon in Adzuki bean chloroplast DNA caused by inverted repeat movement DNA Res. 9 157–162 Occurrence Handle10.1093/dnares/9.5.157 Occurrence Handle12465715

    Article  PubMed  Google Scholar 

  • L.A. Raubeson R.K. Jansen (2005) Chloroplast genomes of plants R Henry (Eds) Diversity and Evolution of Plants-Genotypic and Phenotypic Variation in Higher Plants CABI Publishing Wallingford 45–68

    Google Scholar 

  • O.N. Ruiz H. Hussein N. Terry H. Daniell (2003) ArticleTitlePhytoremediation of organomercurial compounds via chloroplast genetic engineering Plt. Phys. 132 1344–1352 Occurrence Handle10.1104/pp.103.020958

    Article  Google Scholar 

  • O.N. Ruiz H. Daniell (2005) ArticleTitleEngineering cytoplasmic male sterility via the chloroplast genome Plant Physiol 138 1232–1246 Occurrence Handle10.1104/pp.104.057729 Occurrence Handle16009998

    Article  PubMed  Google Scholar 

  • S.E. Scott M.J. Wilkenson (1999) ArticleTitleLow probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa Nat. Biotechnol. 17 390–392 Occurrence Handle10.1038/8623 Occurrence Handle10207890

    Article  PubMed  Google Scholar 

  • B.B. Sears L.L. Stoike W.L. Chiu (1996) ArticleTitleProliferation of direct repeats near the Oenothera chloroplast DNA origin of replication Mol. Biol. Evol. 13 850–863 Occurrence Handle8754220

    PubMed  Google Scholar 

  • D.R. Shapiro K.K. Tewari (1986) ArticleTitleNucleotide sequences of transfer RNA genes in the Pisum sativum chloroplast DNA Plt. Mol. Biol. 6 1–12 Occurrence Handle10.1007/BF00021301

    Article  Google Scholar 

  • A. Spielmann E. Roux J. Allmen Particlevon E. Stutz (1988) ArticleTitleThe soybean chloroplast genome: completed sequence of the rps19 gene, including flanking parts containing exon 2 of rpl2 (upstream), but lacking rpl22 (downstream) Nucl. Acids Res. 16 1199 Occurrence Handle3344206

    PubMed  Google Scholar 

  • S. Schwartz L. Elnitski M. Li M. Weirauch C. Riemer A. Smit N.C.S. Program E.D. Green R.C. Hardison W. Miller (2003) ArticleTitleMultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences Nucl. Acids Res. 31 3518–3524 Occurrence Handle10.1093/nar/gkg579 Occurrence Handle12824357

    Article  PubMed  Google Scholar 

  • J.M. Staub B. Garcia J. Graves P.T.J. Hajdukiewicz P. Hunter N. Nehra (2000) ArticleTitleHigh-yield production of a human therapeutic protein in tobacco chloroplasts Nat. Biotechnol. 18 333–338 Occurrence Handle10.1038/73796 Occurrence Handle10700152

    Article  PubMed  Google Scholar 

  • J. Tang H. Xia M. Cao X. Zhang W. Zeng S. Hu W. Tong J. Wang J. Wang J. Yu H. Yang L. Zhu (2004) ArticleTitleA comparison of rice chloroplast genomes Plt. Phys. 135 412–420 Occurrence Handle10.1104/pp.103.031245

    Article  Google Scholar 

  • J.S. Tregoning P. Nixon H. Kuroda Z. Svab S. Clare F. Bowe N. Fairweather J. Ytterberg K.J. Wijk Particlevan G. Dougan P. Maliga (2003) ArticleTitleExpression of tetanus toxin Fragment C in tobacco chloroplasts Nucl. Acids Res. 31 IssueID4 1174–1179 Occurrence Handle10.1093/nar/gkg221 Occurrence Handle12582236

    Article  PubMed  Google Scholar 

  • P.V. Vitanen A.L. Devine S. Kahn D.L. Deuel D.E. Van-Dyk H. Daniell (2004) ArticleTitleMetabolic engineering of the chloroplast genome using the E. coli ubiC gene reveals that corismate is a readily abundant precursor for 4-hydroxybenzoic acid synthesis in plants Plt. Phys. 136 4048–4060 Occurrence Handle10.1104/pp.104.050054

    Article  Google Scholar 

  • J. Tsudzuki K. Nakashima T. Tsudzuki M. Hiratsuka M. Shibata T. Wakasugi M. Sugiura (1992) ArticleTitleChloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequence of the trnQ, trnK, psbA, trnI, and trnH and the absence of rps16 Mol. Gen. Genet. 232 206–214 Occurrence Handle1557027

    PubMed  Google Scholar 

  • J. Vomstein W. Hachtel (1988) ArticleTitleDeletions, insertions, short inverted repeats, sequences resembling att-lambda, and frame shift mutated open reading frames are involved in chloroplast DNA differences in the genus Oenothera subsection Munzia Mol. Gen. Genet. 213 513–518 Occurrence Handle10.1007/BF00339624 Occurrence Handle3185513

    Article  PubMed  Google Scholar 

  • T. Wakasugi J. Tsudzuki S. Ito K. Nakashima T. Tsudzuki M. Sugiura (1994) ArticleTitleLoss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii Proc. Natl. Acad. Sci. USA 91 9794–9798 Occurrence Handle7937893

    PubMed  Google Scholar 

  • J. Watson V. Koya S.H. Leppla H. Daniell (2004) ArticleTitleExpression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop Vaccine 22 4374–4384 Occurrence Handle10.1016/j.vaccine.2004.01.069 Occurrence Handle15474731

    Article  PubMed  Google Scholar 

  • M.F. Wojciechowski M. Lavin M.J. Sanderson (2004) ArticleTitleA phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family Amer. J. Bot. 91 1846–1862

    Google Scholar 

  • K.H. Wolfe (1988) ArticleTitleThe site of deletion of the inverted repeat is pea chloroplast DNA contains duplicated gene fragments Curr. Genet. 13 97–99 Occurrence Handle10.1007/BF00365763 Occurrence Handle3359497

    Article  PubMed  Google Scholar 

  • S.K. Wyman J.L. Boore R.K. Jansen (2004) ArticleTitleAutomatic annotation of organellar genomes with DOGMA Bioinformatics 20 3252–3255 Occurrence Handle10.1093/bioinformatics/bth352 Occurrence Handle15180927

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Daniell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saski, C., Lee, SB., Daniell, H. et al. Complete Chloroplast Genome Sequence of Glycine max and Comparative Analyses with other Legume Genomes. Plant Mol Biol 59, 309–322 (2005). https://doi.org/10.1007/s11103-005-8882-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-005-8882-0

Keywords

Navigation