
DCMI Kernel Metadata
Community

J. Kunze

 G. Janée

 A. Turner

 California Digital Library

 November 25, 2014

Kernel Metadata and Electronic

Resource Citations (ERCs)

Abstract

Kernel metadata is a small prescriptive vocabulary designed

to support highly uniform but minimal object descriptions for
the purpose of orderly collection management. The Kernel

vocabulary, based on a subset of the Dublin Core (DC)
metadata element set, aims to describe objects of any form

or category, but its reach is limited to a small number of
fundamental questions such as who, what, when, and where.

The Electronic Resource Citation (ERC), also specified in this

document, is an object description that addresses those four
questions using Kernel and other metadata elements.

Table of Contents

1. Goals of Kernel Metadata

2. The Kernel and the ERC in Context
3. Kernel Stories

 3.1. The Anchoring Story
 3.2. Story Summary

4. Kernel Summary and Dublin Core Crosswalk
 4.1. Kernel and Dublin Core Interoperability

5. The Kernel and the ERC
6. The ANVL/ERC Record Syntax

7. Kernel Label Structure
8. Kernel Sort-Friendly Values

 8.1. Commas to Recover Natural Word Order

 TOC

9. Kernel Value Structure

 9.1. Alternate Values, Repeated Values, and
Subvalues

 9.2. Kernel Initial Value Conventions
 9.3. Special Kernel Standardized Value Codes

 9.4. Kernel Date Values
 9.5. Element Value Encoding

10. Vocabulary of Elements and Values
11. References

Appendix A. ERC XML Schema V1.0
§ Authors' Addresses

1. Goals of Kernel Metadata

Kernel metadata is designed to assist orderly collection

management by supporting the creation of brief but highly
uniform object descriptions that can be listed, surveyed, and

searched efficiently during normal collection maintenance
and trouble-shooting activities. These descriptions serve as

object surrogates that are convenient for automated sorting
and filtering operations and are also eye-readable without

specialized display software. The goal of Kernel metadata is
to balance the needs for expressive power, very simple

machine processing, and direct human manipulation of
metadata records.

Kernel metadata is based on the Dublin Core (DC) metadata
element set [RFC5013] maintained by the Dublin Core

Metadata Initiative [DCMI]. With origins in [EPerm], the
kernel elements are descriptors that identify various object

properties. In principle they apply to any object in the
universe, whether digital, physical, or abstract, following in

the tradition of the "URI" [RFC3986]. This extreme diversity
of objects is approached with the hypothesis that highly

variable and rich object descriptions can be directly
comparable at the level of about four fundamental elements

— who, what, when, and where — as applied to an act of

expressing the object. This sequence applied to various
Kernel "stories" is a recurring theme (cf. [ISO19773] event

 TOC

descriptions). In anticipation of future extensions to "how",

"why", and "huh", we refer to the first four elements as "the
four h's" (what they all have in common is an initial

aspirated "h" sound, which is also shorter to say than "w").

Kernel-based descriptions make it possible to compare an
extremely diverse set of objects. Comparison is possible

even when many other elements co-exist with Kernel
elements, or when a minor amount of information in other

elements overlaps with Kernel element information.
Regardless of whether an object is smoked, worn, navigated,

or in any other way, interacted with, its Kernel based

description ensures the presence of a few predictable points
of commonality in the form of easily isolated Kernel

elements. Kernel elements provide a concise intersection of
interoperable (or at least comparable) elements across a

broad range of object descriptions.

2. The Kernel and the ERC in Context

The Kernel is a vocabulary of metadata elements, where an
element pairs a label with a value. As a vocabulary, the

Kernel offers but does not obligate the use of its terms. The

Kernel specifies both metadata elements and how particular
data values should be structured within the elements. These

rules may be complemented by other conventions (e.g.,
[AACR2]), although this is not required. As with most

vocabularies, ultimate responsibility for creating coherent
and sensible descriptions lies with the metadata creator.

The Electronic Resource Citation (ERC) introduced in this

document is a kind of object description that does obligate
use of the four fundamental Kernel elements. Standard

encoding methods such as [RDF] and [XML] may be used

to format ERCs and Kernel metadata. It is also possible to
encode modified forms of Kernel element values using other

methods, such as [MARC] or [MODS], although some
granularity of information may be lost in the process. Two

applications that use Kernel metadata are [ARK] identifiers
and Namaste (NAMe-AS-TExt) tags [Namaste].

 TOC

The practice of using non-Kernel elements along with Kernel

elements is normal: Kernel elements may appear in the
same record with metadata from other vocabularies, such as

Dublin Core and [PREMIS]. The requirement to use the four
fundamental Kernel elements (the four h's) at a minimum is

imposed specifically in the context of a complete ERC record,
such as,

erc:

who: Gibbon, Edward

what: The Decline and Fall of the Roman Empire

when: 1781

where: http://www.ccel.org/g/gibbon/decline/

The four h's provide an affordable set of comparable
elements common to a wide range of divergent metadata

and object types, but do so without limiting the expressive
range of the records.

3. Kernel Stories

The Kernel has a concept of "story", which is an organizing
principle that applies the questions of who, what, when, and

where to different aspects of an object description. The four
required Kernel elements address one particular aspect —

the story of an object's "telling" — and in so doing form
something similar to a traditional citation:

who "told" it (from DC Creator, Contributor, and
Publisher),

what the "telling" was called (from DC Title),
when it was "told" (from DC Date), and

where the "telling" should be found (from DC
Identifier).

(A word such as "expression" might work better than

"telling" for this metaphor, but it conflicts with existing
bibliographic jargon.)

 TOC

One descriptive record may contain stories of different forms

of the same object, for example, its digital and physical
forms. Depending on the object type — article, photograph,

dance, fossil — an object's "telling" could mean quite
different things, such as its publication, installation,

performance, or discovery. One descriptive record may also
contain stories of several different types, such as what the

object is about (its "aboutness"), the origin of the record
itself, the hosting organization's support for the object, and

information about the depositor. More about these story
types is given after first describing the story that anchors a

descriptive record.

3.1. The Anchoring Story

Among all the tales that an object description may tell, the

anchoring story is the one, usually decided upon deposit of
an object into a collection, that was deemed the most

suitable basic object referent for the purposes of orderly
collection management. There are different kinds of object

managers, from subject specialists who create objects, to
digital library experts who acquire them, to collection and

system staff who monitor them. Who among these will
decide what metadata comprises the anchoring story will

often be determined by local collection workflow practices.

Kernel metadata is primarily concerned with supporting

orderly collection curation as a partnership between object
depositors and repository managers. This does not assume

that the depositor or manager, who between them will do
the bulk of object management, has any training in

bibliographic description or in collection subject areas. When
an object throws a system exception or appears out of place

in a depositor-oriented asset report, Kernel metadata is
designed to permit either party to form a clear enough

mental picture to conduct a telephone conversation about it.

The anchoring story is a "lay" description designed to

support this depositor-manager partnership. If there is no
other metadata, the anchoring story should suffice. Even if

 TOC

there is more and richer metadata, the anchoring story

should still be created for those repositories that lack
specialized staff resources to re-catalog or to develop "cross-

walks" that will transform the richer metadata into an
anchoring story. This anchoring story, expressed via the four

h's needs to work for depositor reports, system logs, object
"tombstones" (what is left when the object is withdrawn),

and a record of an object's birth (arrival) in the respository.
The anchoring story can be thought of as "birthstone"

metadata.

The depositor has great latitude in choosing its anchoring

story, but it should appear first in the record as a kind of
object summary that can be easily isolated by the human

eye (Kernel elements appearing anywhere in a record can
always be easily isolated by automated processes). If the

record contains only one story, the anchoring story is it, and
the record consists of just the four h's. A typical anchoring

story for a born-digital document would be the story of the
document's release on a web site, with the "where" element

adjusted to the identifier of the object in the current
repository (after deposit).

For a physical object resulting from a creative act (a book,
statue, photograph, etc), the first three of the four h's

should be biased towards the story of the original act while
the "where" of the "telling" should, if possible, be a

persistent, machine-actionable identifier to a digital
experience of the object. This provides a lay description with

the convenience of online access, while avoiding the tedious
and uninteresting details about who digitized the object,

when it was scanned, etc). The state of an object's having
only a physical instance is tranisient; the most interesting

physical objects are often only a couple of funding cycles
away from the creation of some sort of digital experience of

the object. The complete and pure stories of both the
derivative and original objects can be told, if necessary and

affordable, elsewhere in the record.

An anchoring story need not be the central descriptive goal

of an ERC (or any other) record. For example, a museum
depositor may create an ERC for a digitized photograph of a

painting but choose to anchor it in the story of the original
painting instead of the story of the electronic likeness;

although the ERC may through other stories prove to be

centrally concerned with describing the electronic likeness,
the depositor may have chosen this particular anchoring

story in order to make the ERC visible in a way that is most
natural to patrons (who would find the Mona Lisa under da

Vinci sooner than they would find it under the name of the
person who snapped the photograph or scanned the image).

In another example, a depositor that creates an ERC for a
dramatic play as an abstract work has the task of describing

a piece of intangible intellectual property. To anchor this
abstract object in the concrete world, if only through a

derivative form, it makes sense for the provider to choose a
suitable online edition of the play to tell the anchoring story

for the ERC.

3.2. Story Summary

This section contains the list of currently defined story types,

with additional story types under development. As shown
below, similarly named elements are used in the Kernel to

address the stories of an object's content, its support, the
provenance of the metadata record itself, etc. Only one story

is required of a complete (non-stub) ERC, and only four of its
elements must be present.

 who: a responsible person or party (required)

 what: a name or other human-oriented identifier

(required)

 when: a date important in the object's lifecycle

(required)

 where: a persistent, system-oriented identifier

(required)

 how: (under construction) a formal type designator

Another story is that of an object's content.

 about-who: a person or party figuring in the

information content

 TOC

 about-what: a subject or topic figuring in the

information content

 about-when: a time period covered by the

information content

 about-where: a location or region covered by the

information content

 about-how: a description of the information

content

Another story is that of the origin of the metadata record
itself.

 meta-who: a person or party responsible for the

record

 meta-what: a short form of the identifier for the

record

 meta-when: the last modification date of the record

 meta-where: a persistent identifier of the fullest

form of the record

Another story is that of a support commitment made to an
object.

 support-who: a person or party responsible for the

object

 support-what: a short form of the commitment made

to the object

 support-when: the last modification date of the

commitment

 support-where: a persistent identifier of the

fullest form of the commitment

Another story is that of the depositor.

 depositor-who: a person or party responsible for

the deposit

 depositor-what: role of depositor in depositing

organization

 depositor-when: dates of depositor's tenure in that

role

 depositor-where: a unique machine-readable depositor

identifier

4. Kernel Summary and Dublin Core Crosswalk

Each Kernel element label has a globally unique identifier of
the form http://n2t.net/ark:/99152/hN, where N

corresponds to the terms given in the vocabulary section
later in this document. For example, the Kernel label "who"

has the linked data URI, http://n2t.net/ark:/99152/h1.

These identifiers should be used to reference Kernel
elements in all linked data applications [SEMWEB]. The

namespace defined by URIs starting with
http://n2t.net/ark:/99152/ is permanently reserved for

metadata terms by the California Digital Library

(maintenance agency for the ARK identifier scheme).

The following table, organized by "story", summarizes the
rough correspondence between Kernel elements and Dublin

Core elements; the vocabulary section of this document
details the true correspondence and element restrictions.

STORY KERNEL LABEL SYN DUBLIN CORE

APPROXIMATION

erc: * who h1

Creator/Contributor/Publisher

The story of * what h2 Title

an object's * when h3 Date

"telling". * where h4 Identifier

(permanent)

 how h5 (reserved Type

restriction**)

about-erc: about-who h11 Subject

(personage)

The story of about-what h12 Subject

an object's about-when h13 Coverage

(temporal)

content. about-where h14 Coverage

(spatial)

 about-how h15 Description

 TOC

* A complete ERC requires a non-missing value for

this element.

** Under development.

Where Kernel elements map to Dublin Core (DC) elements,
the map is roughly one-to-one, but with a few notable

exceptions.

1. "who" maps to DC Creator, but if no Creator use
Publisher, and if no Publisher, use Contributor; "who"

resembles what was once considered in DCMI to be an
"agent" element

2. "about-when" maps to the temporal aspect of DC
Coverage and "about-where" maps to the spatial

aspect of DC Coverage.

3. The Kernel assumes that most values, especially
personal names given in "who", will be given in "sort-

friendly" manner, for example, "lastname, firstname"
for western names and natural word order for Chinese

names.
4. The Kernel assumes [TEMPER] format for dates in

order to express date ranges, lists, approximate dates,
and BC dates (not possible, for example, with

[W3CDTF]).

4.1. Kernel and Dublin Core Interoperability

Kernel metadata currently maintains a basic level of

interoperability with Dublin Core metadata. In formal terms,
it conforms to "Level 1" interoperability [DCMI-IL]. Higher

levels of interoperability, such as the "Level 2" mapping of
Kernel metadata to RDF, are being sought and may be

established in subsequent specifications.

5. The Kernel and the ERC

 TOC

 TOC

This table illustrates the strong connection between the story

concept in the Kernel and the ERC. While the Kernel is a
vocabulary, it is the ERC that brings the assumptions about

required elements. An ERC that does not contain all four h's
is still a useful container, as when a description is being

constructed, but it is classified as a "stub ERC". In the case
of a stub, such as,

erc:

what: The Digital Dilemma

where: http://books.nap.edu/html/digital%5Fdilemma

the "erc:" label indicates that Kernel vocabulary elements
are expected, and later inspection discloses that this ERC is
incomplete.

An abbreviated form of any story can be given using the

story label as an element label, and then constructing one

long value by listing each of the story elements' values, in
the order shown above, separated by a solidus ("|").

Because this composite value drops the constituent value
labels, the ordering must be strictly observed so that the

corresponding elements can be accurately identified. The
abbreviated form of the example from section 2 is:

erc: Gibbon, Edward | The Decline and Fall of the

Roman Empire

 | 1781 | http://www.ccel.org/g/gibbon/decline/

A story label appearing with no value may be useful in
visually setting off a region of a record but otherwise has no
significance. The one exception is that the "erc" label, with

or without an accompanying value, serves as a kind of
record label that declares an object description to be an ERC.

Any story label can introduce an abbreviated story form,
such as,

meta-erc: NLM | pm9546494 | 19980418

 | http://ark.nlm.nih.gov/12025/pm9546494??

about-erc: | Bispectrum ; Nonlinearity ; Epilepsy

 ; Cooperativity ; Subdural ;

Hippocampus

There is no general requirement concerning missing values
for these story labels (unlike for the "erc" label). It is
common for composite Kernel elements to be constructed

with subelement ordering that echoes the familiar who,
what, when, where pattern.

Future versions of the Kernel may extend the four h's with
two additional but non-required elements: how and why.

These element names are reserved but under construction.

6. The ANVL/ERC Record Syntax

One way to represent an ERC is to use ANVL (A Name-Value
Language), a simple text-based record syntax in the

tradition of classic internet protocols such as [RFC2822].

Here is an example of an ERC as an ANVL record:

erc:

who: Lederberg, Joshua

what: Studies of Human Families for Genetic Linkage

when: 1974

where: http://profiles.nlm.nih.gov/BB/AA/TT/tt.pdf

note: This is an arbitrary note inside a

 small descriptive record.

What makes this ANVL record a complete ERC record is the
"erc:" label and the presence of the four required elements.

It is possible to represent an ERC in many different

encodings (e.g., XML with the schema in Appendix A),
provided the Kernel rules for element labels and values are

followed. The Kernel rules coincide with rules for ANVL labels

and values. Because ANVL is concise and easy to read, we
will continue to use it in examples throughout this document.

As an ANVL record, the ERC is a sequence of elements

beginning with "erc:" and ending in a blank line (two

 TOC

newlines in a row). While the ERC will look different in other

encodings, in ANVL,

1. The record begins with "erc:" and ends at the first
blank line.

2. Each element consists of a label, a colon, and an
optional value.

3. A long value may be folded (continued) onto the next
line by inserting a newline and indenting the next line.

4. A line beginning with a number sign ("#") is to be
treated by recipients as if it were not present (a

programmer would call this a comment line).

5. The ordering of lines is significant; e.g., the ordering
should be preserved upon record display or

transformation.

A value can thus be folded across multiple lines. An element
value folded across several lines is treated as if the lines

were joined together on one long line; thus the "note"
element above is considered the same as

note: This is an arbitrary note inside a small

descriptive record.

That is all that this document has to say about ANVL, a

complete description of which is detailed in the ANVL
specification [ANVL].

Independent of ANVL or any other encoding, there are rules

for encoding ERCs in any concrete syntax. Inside Kernel
element labels and values these rules happen to coincide

with the ANVL element rules. The basic features of any

format holding Kernel elements are:

1. An element consists of a value paired with a non-
empty label.

2. In general, a record may contain any number of
element instances bearing the same label.

3. Element order is preserved.

In addition to these element rules, an ERC is considered

complete only if all four elements "who", "what", "when",
and "where" are present with no missing values; these four

h's each have the coded synonyms h1, h2, h3, and h4,

respectively. If a best effort to supply a value fails, in its
place must be given a standardized value (below) indicating

the reason for the missing value.

As mentioned, the Kernel is just a vocabulary and it is the
ERC that imposes assumptions about required elements. The

four h's may be supplied with implicit labels by using the
abbreviated-form ERC. In this case, element ordering must

be strictly observed, as in

erc: Lederberg, Joshua

 | Studies of Human Families for Genetic Linkage

| 1974

 http://profiles.nlm.nih.gov/BB/AA/TT/tt.pdf

note: This is an arbitrary note inside a

 small descriptive record.

A record that does not have all four h's is considered a "stub
ERC". Stubs may be especially useful for holding records that

are under construction or are subject to an automated
completion process.

While the ERC is a general-purpose container for exchange
of resource descriptions, it does not dictate how records

must be internally stored, laid out, or assembled by data
providers or recipients. Arbitrary internal descriptive

frameworks can support ERCs simply by mapping (e.g., on
demand) local records to an ERC container and making them

available for export. Therefore, to support ERCs there is no
need for a data provider to convert internal data to be stored

in an ERC format.

7. Kernel Label Structure

The rest of this document is concerned with Kernel metadata

independent of the ERC. Nonetheless, examples will continue
to be given using the ANVL/ERC format.

 TOC

Kernel element labels are strings beginning with a letter that

may contain any combination of letters, numbers, hyphens,
and underscores ("_"). A period (".") is reserved to separate

a namespace designation from a label and must otherwise be
encoded as "%pd". Element labels are therefore fairly

consistent with rules for [XML] names.

One inconsistency with XML is that Kernel labels may be
entered with spaces. In this case all sequences of spaces are

considered equivalent to a single space, and that space in
turn is then considered (for matching and for export to XML)

to be equivalent to an underscore. Any initial and final

spaces are stripped away before processing a label.

For comparison purposes, element labels are also considered
case-insensitive; in other words, labels may be entered and

displayed with case differences, but there is no possibility of
conflict behind the scenes when spaces and upper case are

normalized to underscore and lower case. For example,
these rules prevent any future version of the Kernel from

ever having these as two distinct elements,

marc_856

MARC 856

For display purposes, element labels are considered case-
sensitive; in other words, upper- and lower-case distinctions

should be preserved upon display.

An element label may also be accompanied by its coded
synonym. In ANVL the synonym follows the label and is

enclosed in parentheses (whereas in XML, for example, the

synonym might be an XML attribute). In fact, if the official
coded synonym is present, the label itself may be

represented in any UTF-8 [RFC3629] form (e.g., in a local
translation) that is convenient for the record's local

audience, as in,

erc:

wer(h1): Miller, Alice

was(h2): Am Anfang war Erziehung

wann(h3): 1983

wo(h4): http://www.amazon.com/exec/obidos/ASIN%{

 /0374522693/thenaturalchildp %}

Titel(h501): (en) For your Own Good: Hidden Cruelty

 in Child-Rearing and the Roots of

Violence

In this example, the labels are intended for local audiences
and the coded synonyms allow for unambiguous

interpretation by software that can display labels translated
for other audiences.

8. Kernel Sort-Friendly Values

Metadata standards can in principle guide the creation of
records that result in sensible orderings when sorted by such

things as title, date, and author, however, some standards
are not prescriptive in this regard (e.g., Dublin Core

[RFC5013]). Moreover, when received metadata originates
from a wide variety of sources and domains, as in "semantic

web" applications, incompatible creation practices make it
hard to produce completely understandable orderings.

For Kernel metadata, a set of values (e.g., author names
found across a set of records) is considered sort-friendly if a

simple lexical sort results in an ordering that makes sense to
users. While this definition leaves room for subjectivity and

variability in creation practices, it demands consistency
within each local practice. More importantly, without the

benefit of domain or source knowledge, any receiver with the
simplest tools is likely to be able to sort these values

sensibly, even if they originate from otherwise very different
practices. As an example, simple lexical sorting by any one

of the element forms,

who: Khan, Hashim

what: Importance of Being Earnest, The

when: 19580924

would create alphabetical orderings by either "most
significant word" or chronological ordering. This readily

understandable result suggests that the set of values

 TOC

represented by each of these forms is sort-friendly. By

contrast, simple sorting by any one of these forms,

who: Hashim Khan

what: The Importance of Being Earnest

when: Sep 24, 1958

would create orderings that will be alphabetic by given
name, first title word (significant or not), or month name.

For a few special applications, this may be the intended
effect, but in most cases it will be a sign of values that are

not sort-friendly. There is a tension in Western languages,
addressed in the next section, between sort-friendly values

and natural word order.

Creators of Kernel metadata are assumed to have made a
best effort to include dates, titles, names, and other values

in a sort-friendly manner. This does not solve the difficult

general problem of creating fully sortable, cross-domain
records, but it is a practical first step. Sort-friendly values

can be equally useful for Kernel and non-Kernel metadata.

8.1. Commas to Recover Natural Word Order

Sometimes the desire to create sort-friendly values conflicts
with natural word order, as with Western-style personal

names and grammatical articles for which less significant
words precede (stealing sort precedence from) more

significant words. To mitigate this conflict, a value may

optionally end with a "," (comma) that indicates how to
recover natural word order. It works roughly as follows: if

other non-final commas are present in the value, they mark
inversion points that software (or the human eye) can use to

re-order words in the value. For example,

who: van Gogh, Vincent,

who: Howell, III, PhD, 1922-1987, Thurston,

who: Acme Rocket Factory, Inc., The,

who: Hu Jintao,

 TOC

Natural word order can be restored by taking the last non-

empty part of the value set off by an internal comma and
placing it at the beginning. Note that if there are no commas

at all or only one comma is present, no inversion point is
indicated.

If two inversion points are desired, end the value with two

commas in a row. This can help when there are three grades
of word significance, as with Western honorifics. The two

inversion points are positioned so that the second to last
part serves as a secondary sort key and the last part as a

tertiary sort key. To recover natural word order, the second

to last non-empty part of the value bracketed by commas is
placed at the beginning, preceded by the very last non-

empty part. For example, in these cases,

who: McCartney, Pat, Ms,,

who: McCartney, Paul, Sir,,

who: McCartney, Petra, Dr,,

what: Health and Human Services, United States

Government

 Department of, The,,

natural word order is restored by first pulling off the final
non-empty part bracketed by commas, applying the previous

rule (moving the now-final non-empty part to the
beginning), and then adding back that formerly-final part to

the beginning. The values from the above two sets of
examples have the following natural word orders.

Vincent van Gogh

Thurston Howell, III, PhD, 1922-1987

The Acme Rocket Factory, Inc.

Hu Jintao

Ms Pat McCartney

Sir Paul McCartney

Dr Petra McCartney

The United States Government Department of Health and

Human Services

As mentioned this feature is can be used to express
Western-style personal names in family-name-given-name

order. The last line above shows that it can also be used

wherever natural word order might produce unexpected

results with naive sorting software, such as when data
contains titles or corporate names.

While Kernel metadata creators should make a best-effort to

produce values that are sort-friendly when compared with
the same element in other records, the consequences of

failing to do so need not halt metadata production. It is more
useful to supply a value for an element than to suppress it

because of uncertainty about whether it will sort well.

9. Kernel Value Structure

With sort-friendliness as a desirable, in general Kernel values

consist of free text. Exceptions are triggered by structuring
markers that may occur either anywhere inside a value or

only at the beginning of a value.

Markers that may occur anywhere in a value:

";" for repeated values and

"|" for subvalues

Markers that may occur only at the beginning of a value:

"(: ...)" for special value indicators or

one of the characters ";", "|", or "," explained
later.

These structuring markers are explained next.

9.1. Alternate Values, Repeated Values, and Subvalues

The semi-colon (";") is used to separate repeated "peer"
values that could equivalently be represented as multiple

elements with the label repeated for each separate value; in
programmer terms, the ";" is a kind of array element

 TOC

 TOC

separator. In mapping between these single- and multi-line

forms, ordering of element values should be preserved. For
example,

who: Smith, J; Wong, D; Khan, H

is a shorter way of representing

who: Smith, J

who: Wong, D

who: Khan, H

The solidus ("|") is used to separate component subvalues
with different types of "non-peer" contribution to the overall

value; this supports an element that has sub-structure. For
example,

in: EEG Clin Neurophysiol | v103, i6, p661-678 |

19971200

If used together, ";" holds its neighbors more tightly (has
higher grouping precedence) than "|". For example, in this

"erc" element

erc: Smith, J; Wong, D; Khan, H

 | Cocktail Napkin Drawing #2 | 1969

 | (:unav) destroyed during spill of 19690401

there are four sub-elements, the first of which has three
repeated values.

At an even higher level of precedence than ";" is "(=)",
which is used to separate alternate versions of one particular

value. For example, in

who: Bibliothèque nationale de France (=) National

Library

 of France (=) BNF; Library of Congress (=)

LC

the first of two repeated values contains an institutional

name in French, then in English, and then as an acronym. In
the second of the two repeated values are two alternate

values.

9.2. Kernel Initial Value Conventions

Kernel values usually start with free text, but exceptions are
made when the first character of a value begins with one of

the single action characters ";", "|", or ",". When one of the
single characters is recognized at the start of a value, the

appropriate action is taken, the character is effectively

removed, and processing continues on the remainder until a
character that is not one of these three is seen. For example,

once a SPACE character or a "(: ...)" construct (a special
value indicator) has been recognized, no further initial single

character processing occurs.

When a value or subvalue starts with ";", it "quotes" any
internal occurrences of ";", in other words, it turns off the

special ability of ";" to divide a value or subvalue into
repeated values. When a value starts with "|", it "quotes"

any internal occurrences of "|", in other words, it turns off

the special ability of "|" to divide a value into subvalues.
Similarly, when a value or subvalue starts with ",", it turns

off the special ability of "," at the end to indicate word order
inversion points, as explained previously.

9.3. Special Kernel Standardized Value Codes

A value starting with "(: ...)" indicates a standardized

(controlled) value code, usually short and precise, that is

designed to be readable by software. Such a value code
often forms only part of the value. More than one value code

may appear at the beginning of a value.

 TOC

 TOC

Special value codes serve different purposes. A code can

indicate a single specific value, with the remaining value text
offering a human-readable equivalent; for example,

 who: (:unkn) anonymous

tells software that the element value is officially unknown
and the other text tells the same thing to a human reader of

English that may be expecting the name of an author. A
code can also indicate that the value is at a location given by

the remaining text (which should be an actionable identifier
such as a URL) and is not otherwise present; for example,

 who: Wong, D

 who: (:at) http://example.org/abc/def/ghi.txt

 rights: (:at) http://example.com/rights/123.html

could be used to indicate a first author, sixty-five co-authors

listed in a separate file, and a copyright statement posted on
a corporate website.

Some special value codes are summarized here. All but the

last four indicate different kinds of "missing value":

(:unac) temporarily inaccessible

(:unal) unallowed, suppressed intentionally
(:unap) not applicable, makes no sense

(:unas) value unassigned (e.g., Untitled)
(:unav) value unavailable, possibly unknown

(:unkn) known to be unknown (e.g., Anonymous,
Inconnue)

(:none) never had a value, never will
(:null) explicitly and meaningfully empty

(:tba) to be assigned or announced later
(:etal) too numerous to list (et alia).

(:at) the real value is at the given URL or

identifier.

9.4. Kernel Date Values TOC

A commonly recurring value type is a date, which may be

followed by a time. The [TEMPER] format is preferred to the
[W3CDTF] format, which has limitations in expressing

ranges, lists, approximate, and BC dates. Kernel dates may
take one of the following forms:

1999 (four digit year)

20001229 (year, month, day)

20001229235955 (year, month, day, hour, minute,

second)

Hyphens and commas are reserved to create date ranges
and lists, for example,

1996-2000 (a range of four years)

1952, 1957, 1969 (a list of three years)

1952, 1958-1967, 1985 (a mixed list of dates

and ranges)

20001229-20001231 (a range of three days)

Approximate and BCE dates can also be expressed, as in,

1850~ (around the year 1850)

BCE1212 (death of Rameses the

Great)

BCE0551 (birth of Confucius)

Note that BCE dates inherently sort in reverse order. But
because "BCE" appears first in the TEMPER value, naive

sorting software first places all BCE dates together as a
group, after which the simple intervention of reversing the

order of the group achieves correct chronological order.

9.5. Element Value Encoding

Some characters that need to appear in element values

might conflict with special characters used for structuring
values, so there needs to be a way to include them as literal

characters that are protected from special interpretation.

 TOC

This is accomplished through an encoding mechanism that

resembles the %-encoding familiar to URI [RFC3986]
handlers.

The value encoding mechanism also uses `%', but instead of

taking two following hexadecimal digits, it takes two
alphabetic characters that cannot be mistaken for hex digits

or one non-alphanumeric character. It is designed not to be
confused with normal web-style %-encoding. In particular it

can be decoded without risking unintended decoding of
normal %-encoded data (which would introduce errors).

Here are the extended Kernel encoding extensions, the

middle column giving the equivalent and usual hexadecimal
encoding.

 Code Hex Purpose

 ---- --- --------------------------------------

 %sp %20 decodes to space

 %ex %21 decodes to !

 %dq %22 decodes to "

 %ns %23 decodes to #

 %do %24 decodes to $

 %pe %25 decodes to %

 %am %26 decodes to &

 %sq %27 decodes to '

 %op %28 decodes to (

 %cp %29 decodes to)

 %as %2a decodes to *

 %pl %2b decodes to +

 %co %2c decodes to ,

 %pd %2e decodes to .

 %sl %2f decodes to /

 %cn %3a decodes to :

 %sc %3b decodes to ;

 %lt %3c decodes to <

 %eq %3d decodes to =

 %gt %3e decodes to >

 %qu %3f decodes to ?

 %at %40 decodes to @

 %ox %5b decodes to [

 %ls %5c decodes to \

 %cx %5d decodes to]

 %vb %7c decodes to |

 %nu %00 decodes to null

 %% %25 decodes to %

 %_ n/a a non-character used as a syntax shim

 %{ n/a a non-character that begins an

expansion block

 %} n/a a non-character that ends an expansion

block

One particularly useful construct in an element values is the
pair of special encoding markers ("%{" and "%}") that
indicates a "expansion" block. Whatever string of characters

they enclose will be treated as if none of the contained
whitespace (SPACEs, TABs, Newlines) were present. This

comes in handy for writing long, multi-part URLs in a

readable way. For example, the value in

where: http://foo.bar.org/node%{

 ? db = foo

 & start = 1

 & end = 5

 & buf = 2

 & query = foo + bar + zaf

 %}

is decoded into an equivalent element, but with a correct and
intact URL:

where:

http://foo.bar.org/node?db=foo&start=1&end=5&buf=2&qu

ery=foo+bar+zaf

10. Vocabulary of Elements and Values

This vocabulary includes a mixture of Kernel elements,
values, and concepts. In the definitions below, the term

"resource" is synonymous with "object". Each vocabulary

element label has a short, coded synonym that consists of
the letter 'h' followed by a number, such as h1, h2, h3, etc.

Each vocabulary element also has a long, globally unique
identifier that is a URI composed of

 TOC

http://n2t.net/ark:/99152/ followed by the short synonym;

for example,

about-when(h13) --> http://n2t.net/ark:/99152/h13

At the price of some redundancy, it also includes the basic
15 Dublin Core (DC) element definitions because (a) DC

elements can be used without namespace qualification in

ERC records and (b) the Kernel assigns them coded
synonyms (h501-h515).

about-erc (h10):

A composite element, structured according to the
four h's, that describes the content of the object.

Without a value, it is a label for visually setting off
a region in a record.

about-what (h12):
A topic of the resource. DC Mapping: Subject

about-when (h13):

A temporal topic of the resource. DC Mapping:
Coverage (temporal)

about-where (h14):
A spatial topic of the resource. DC Mapping:

Coverage (spatial)
about-who (h11):

A name of a personage that is a topic of the
resource.

about-how (h15):
An account of the resource. DC Mapping:

Description
contributor (h506):

An entity responsible for making contributions to
the resource. Examples of a Contributor include a

person, an organization, or a service. Typically, the

name of a Contributor should be used to indicate
the entity.

coverage (h514):
The spatial or temporal topic of the resource, the

spatial applicability of the resource, or the
jurisdiction under which the resource is relevant.

Spatial topic and spatial applicability may be a
named place or a location specified by its

geographic coordinates. Temporal topic may be a

named period, date, or date range. A jurisdiction

may be a named administrative entity or a
geographic place to which the resource applies.

Recommended best practice is to use a controlled
vocabulary such as the Thesaurus of Geographic

Names [TGN]. Where appropriate, named places
or time periods can be used in preference to

numeric identifiers such as sets of coordinates or
date ranges.

creator (h502):
An entity primarily responsible for making the

resource. Examples of a Creator include a person,
an organization, or a service. Typically, the name

of a Creator should be used to indicate the entity.
date (h507):

A point or period of time associated with an event

in the lifecycle of the resource. Date may be used
to express temporal information at any level of

granularity. Recommended best practice is to use
an encoding scheme, such as the W3CDTF profile

of ISO 8601 [W3CDTF].
depositor-erc (h40):

A composite element, structured according to the
four h's, that describes the depositor of the object.

depositor-who (h41):
The name of a person or party responsible for the

deposit.
depositor-what (h42):

The role of the depositor in the depositing
organization.

depositor-when (h43):

The dates of depositor's tenure in the role of
depositor within the depositing organization.

depositor-where (h44):
A unique machine-readable identifier for the

depositor.
description (h504):

An account of the resource. Description may
include but is not limited to: an abstract, a table of

contents, a graphical representation, or a free-text
account of the resource.

ERC
Electronic Resource Citation, an object description

that uses, at a minimum, the fundamental Kernel

elements, who, what, when, and where addressing

the "telling" of the object.
erc (h9):

A composite element, structured according to the
four h's, that describes the "telling" of the

resource. Without a value, it is a label declaring a
record to be an ERC, a complete instance of which

requires non-missing values for each of the four
h's.

(:etal)
A null element term explaining that the value is a

stand-in for other values too numerous to list (et
alia).

format (h509):
The file format, physical medium, or dimensions of

the resource. Examples of dimensions include size

and duration. Recommended best practice is to use
a controlled vocabulary such as the list of Internet

Media Types [RFC2046].
four h's

The four fundamental Kernel elements — who,
what, when, where — commonly used to structure

composite Kernel elements. To say "structured
according to the four h's" indicates a sub-element

sequence suggesting this particular sequence; this
serves as an important memory aid with

abbreviated form elements in which explicit labels
are absent. The literal form of these labels, by

themselves, address the story of the "telling" of an
object, and in that form they are required of every

complete ERC. Future versions of the Kernel may

extend the sequencing of four h's with non-
required elements "how", "why", and "huh".

identifier (h510):
An unambiguous reference to the resource within a

given context. Recommended best practice is to
identify the resource by means of a string

conforming to a formal identification system.
in (h602):

(under construction) Reserved for a composite
element referencing a serial publication in which

the described object appears. This element is
structured in a manner loosely reminiscent of the

four h's, indicating serial name,

volume/issue/page, date, and issue URL. DC

Mapping: Relation
how (h5):

(under construction) Reserved for a coded value
indicating how the object was expressed.

huh (h7):
(under construction) Reserved to indicate the

character set encoding and language of the
metadata record.

language (h512):
A language of the resource. Recommended best

practice is to use a controlled vocabulary such as
[RFC4646].

metadata
Structured data, generally descriptive of or

associated with a given object or resource.

Structured data at a minimum has evident start
and end points and may have evident labels.

meta-erc (h30):
A composite element, structured according to the

four h's, that describes the "telling" of this (the
containing) record. Without a value, it is a label for

visually setting off a region in a record.
meta-what (h32):

A short form of the identifier for the record.
meta-when (h33):

The last modification or review date of the record.
meta-where (h34):

A persistent identifier of the fullest form of the
record.

meta-who (h31):

A person or party responsible for the record.
(:none)

A null element term explaining that the element
never had a value and never will. This is a stronger

form of :unas.
note (h601):

A free text note about the record.
(:null)

A null element term explaining that the value is
explicitly empty, where an empty value has a well-

defined meaning in contexts (not necessarily
evident) in which the element is used.

object

Anything to which metadata may be applied.

Synonym: "resource"
publisher (h505):

An entity responsible for making the resource
available. Examples of a Publisher include a

person, an organization, or a service. Typically, the
name of a Publisher should be used to indicate the

entity.
resource

Anything to which metadata may be applied.
Synonym: "object"

relation (h513):
A related resource. Recommended best practice is

to identify the related resource by means of a
string conforming to a formal identification system.

rights (h515):

Information about rights held in and over the
resource. Typically, rights information includes a

statement about various property rights associated
with the resource, including intellectual property

rights.
source (h511):

A related resource from which the described
resource is derived. The described resource may

be derived from the related resource in whole or in
part. Recommended best practice is to identify the

related resource by means of a string conforming
to a formal identification system.

subject (h503):
The topic of the resource. Typically, the subject will

be represented using keywords, key phrases, or

classification codes. Recommended best practice is
to use a controlled vocabulary. To describe the

spatial or temporal topic of the resource, use the
Coverage element.

support-erc (h20):
A composite element, structured according to the

four h's, that describes the support commitment a
provider makes to the object. Without a value, it is

a label for visually setting off a region in a record.
support-what (h22):

A short form of the commitment made to the
object.

support-when (h23):

The last modification or review date of the

commitment made to the object.
support-where (h24):

A persistent identifier of the fullest form of the
commitment made to the object.

support-who (h21):
A person or party responsible for the object, such

as the provider of preservation or access services.
stub ERC

An incomplete ERC record. To be incomplete it is
sufficient for one or more of the four h's (the

elements who, what, when, and where) to be
missing or to have a missing value.

(:tba)
A null element term explaining that the value is to

be assigned or announced later.

title (h501):
A name given to the resource.

type (h508):
The nature or genre of the resource.

Recommended best practice is to use a controlled
vocabulary such as the DCMI Type Vocabulary

[DCTYPE]. To describe the file format, physical
medium, or dimensions of the resource, use the

Format element.
(:unac)

A null element term explaining that the value is
temporarily inaccessible. This might be due, for

example, to a system outage.
(:unal)

A null element term explaining that the value is

unallowed or suppressed intentionally.
(:unap)

A null element term explaining that no value is
applicable or makes no sense.

(:unas)
A null element term explaining that a value was

never assigned. An untitled painting is an example.
(:unav)

A null element term explaining that the value is
unavailable for some reason. Compared to :unkn,

this term conveys no particular confidence about
the non-existence of the value. It may originate in

collections that have not yet conducted a thorough

investigation or it may arise in intermediate

systems that repackage received records having
missing elements.

(:unkn)
A null element term explaining that the value is

unknown. Compared to :unav, this term conveys
greater confidence and authority that an

appropriate value is unknown to anyone for the
object described. An example is an expert

assessment of "anonymous" concerning
authorship.

what (h2):
A human-oriented name given to the resource, or

what this "telling" of the resource was called.
Compared to the "where" element, which is also a

kind of name, the "what" element tends to be

more suitable for human consumption. DC
Mapping: Title

when (h3):
A point or period of time associated with an event

in the lifecycle of the resource, often when it was
expressed, created or made available. DC

Mapping: Date
where (h4):

An access-oriented name given to the resource, or
where this resource was expressed. is to identify

the resource by means of a string or number
conforming to a formal identification system.

Compared to the "what" element, which is also a
kind of name, the "where" element tends to be

more suitable for automated access. DC Mapping:

Identifier
who (h1):

An entity responsible for expressing the object,
such as creating it or making it available. Examples

of "who" include a person, an organization, or a
service. DC Mapping: Creator, but if no Creator use

Publisher, and if no Publisher, use Contributor
why (h6):

(under construction) Reserved for required legal
language that must appear in a metadata record,

including copyright and disclaimer statements.

11. References

[AACR2] American Library Association, “Anglo-American Cataloguing Rules,” 2007

(HTML).

[ANVL] Kunze, J. and Kahle, B., “A Name-Value Language,” February 2005 (PDF).

[ARK] Kunze, J. and R. Rodgers, “The ARK Persistent Identifier Scheme,”

July 2007 (PDF).

[DCMI] DCMI Usage Board, “DCMI Metadata Terms” (HTML).

[DCMI-IL] DCMI Usage Board, “Interoperability Levels for Dublin Core Metadata,”

May 2009 (HTML).

[DCTYPE] DCMI Usage Board, “DCMI Type Vocabulary” (HTML).

[EPerm] Kunze, J., “A Metadata Kernel for Electronic Permanence,”

October 2001 (HTML).

[ISO19773] ISO/IEC, “ISO/IEC 19773:2011 Information technology - Metadata

Registries (MDR) modules,” 2011 (HTML).

[MARC] Library of Congress, “Machine Readable Cataloguing,” 2007 (HTML).

[MODS] Library of Congress, “Metadata Object Description Schema,” June 2006

(HTML).

[Namaste] Kunze, J., “Directory Description with Namaste Tags,” April 2009

(HTML).

[PREMIS] OCLC and RLG, “PREMIS Data Dictionary, version 1.0,” 2005 (PDF).

[RDF] W3C, “Resource Description Framework” (HTML).

[RFC5013] Kunze, J. and T. Baker, “The Dublin Core Metadata Element Set,”

RFC 5013, August 2007 (TXT).

[RFC2046] Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions

(MIME) Part Two: Media Types,” RFC 2046, November 1996 (TXT).

[RFC2822] Resnick, P., “Internet Message Format,” RFC 2822, April 2001 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63,

RFC 3629, November 2003 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource

Identifier (URI): Generic Syntax,” STD 66, RFC 3986, January 2005

(TXT, HTML, XML).

[RFC4646] Phillips, A. and M. Davis, “Tags for Identifying Languages,” RFC 4646,

September 2006 (TXT).

[SEMWEB] Shadbolt, N., Hall, W., and T. Berners-Lee, “The Semantic Web Revisited,”

May 2006 (HTML).

[TEMPER] Blair, C. and J. Kunze, “Temporal Enumerated Ranges,” August 2007

(PDF).

[TGN] Getty, J., “Thesaurus of Geographic Names” (HTML).

[W3CDTF] Wolf, M. and C. Wicksteed, “Date and Time Formats (W3C profile of

ISO8601)” (HTML).

[XML] W3C, “Extensible Markup Language (XML) 1.0 (Fourth Edition),”

August 2006 (HTML).

 TOC

http://www.aacr2.org/
http://www.aacr2.org/
http://www.cdlib.org/inside/diglib/ark/anvlspec.pdf
http://www.cdlib.org/inside/diglib/ark/anvlspec.pdf
http://www.cdlib.org/inside/diglib/ark/arkspec.pdf
http://www.cdlib.org/inside/diglib/ark/arkspec.pdf
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/interoperability-levels/
http://dublincore.org/documents/interoperability-levels/
http://dublincore.org/documents/2010/10/11/dcmi-type-vocabulary/
http://dublincore.org/documents/2010/10/11/dcmi-type-vocabulary/
http://www.nii.ac.jp/dc2001/proceedings/abst-27.html
http://www.nii.ac.jp/dc2001/proceedings/abst-27.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:19773:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19773:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:19773:ed-1:v1:en
http://www.loc.gov/marc/
http://www.loc.gov/marc/
http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/mods/
http://www.cdlib.org/inside/diglib/namaste/namastespec.html
http://www.cdlib.org/inside/diglib/namaste/namastespec.html
http://www.oclc.org/research/projects/pmwg/premis-dd.pdf
http://www.oclc.org/research/projects/pmwg/premis-dd.pdf
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://tools.ietf.org/html/rfc5013
http://www.rfc-editor.org/rfc/rfc5013.txt
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://www.rfc-editor.org/rfc/rfc2046.txt
http://tools.ietf.org/html/rfc2822
http://www.rfc-editor.org/rfc/rfc2822.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4646
http://www.rfc-editor.org/rfc/rfc4646.txt
http://eprints.ecs.soton.ac.uk/12614/1/Semantic_Web_Revisted.pdf
http://eprints.ecs.soton.ac.uk/12614/1/Semantic_Web_Revisted.pdf
http://www.cdlib.org/inside/diglib/ark/temperspec.pdf
http://www.cdlib.org/inside/diglib/ark/temperspec.pdf
http://www.getty.edu/research/tools/vocabularies/tgn/
http://www.getty.edu/research/tools/vocabularies/tgn/
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

Appendix A. ERC XML Schema V1.0

This section contains an XML schema for the ERC.

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://dublincore.org/dcx/kernel/"

 elementFormDefault="qualified">

<element name="erc">

 <complexType>

 <sequence>

 <element name="who" type="string"

maxOccurs="unbounded"/>

 <element name="what" type="string"

maxOccurs="unbounded"/>

 <element name="when" type="string"

maxOccurs="unbounded"/>

 <element name="where" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="how" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="about-who" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="about-what" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="about-when" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="about-where" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="about-how" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="meta-who" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="meta-what" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="meta-when" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="meta-where" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="support-who" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="support-what" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="support-when" type="string"

 TOC

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="support-where" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="depositor-who" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="depositor-what" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="depositor-when" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="depositor-where" type="string"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

</element>

</schema>

Authors' Addresses

 John A. Kunze

 California Digital Library

 415 20th St, 4th Floor

 Oakland, CA 94612

 US

Email: jak@ucop.edu

 Greg Janée

 California Digital Library

 415 20th St, 4th Floor

 Oakland, CA 94612

 US

Email: greg.janee@ucop.edu

 Adrian Turner

 California Digital Library

 415 20th St, 4th Floor

 Oakland, CA 94612

 US

Email: adrian.turner@ucop.edu

 TOC

mailto:jak@ucop.edu
mailto:greg.janee@ucop.edu
mailto:adrian.turner@ucop.edu

