Abstract
Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.
References
Baron A, Diochot S, Salinas M, Deval E, Noël J, Lingueglia E (2013) Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon 75:187–204
Bosmans F, Martin-Eauclaire MF, Swartz KJ (2008) Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456(7219):202–208
Bucaretchi F, Deus Reinaldo CR, Hyslop S, Madureira PR, De Capitani EM, Vieira RJ (2000) A clinico-epidemiological study of bites by spiders of the genus Phoneutria. Rev Inst Med Trop 42(1):17–21
Craig R, Beavis RC (2004) TANDEM: matching proteins with mass spectra. Bioinformatics 20(9):1466–1467
Diaz JH (2004) The global epidemiology, syndromic classification, management, and prevention of spider bites. Am J Trop Med Hyg 71(2):239–250
Diniz MRV, Paine MJL, Diniz CR, Theakston RDG, Crampton JM (1993) Sequence of the cDNA coding for the lethal neurotoxin Tx1 from the Brazilian armed spider Phoneutria nigriventer predicts the synthesis and processing of a preprotoxin. J Biol Chem 268(21):15340–15342
Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13(1):22–24
Escoubas P (2006) Molecular diversification in spider venoms: a web of combinatorial peptide libraries. Mol Divers 10(4):545–554
Escoubas P, Diochot S, Corzo G (2000) Structure and pharmacology of spider venom neurotoxins. Biochimie 82(9–10):893–907
Gomes PC, de Souza BM, Dias NB, Cesar-Tognoli LM, Silva-Filho LC, Tormena CF, Rittner R, Richardson M, Cordeiro MN, Palma MS (2011) Nigriventrine: a low molecular mass neuroactive compound from the venom of the spider Phoneutria nigriventer. Toxicon 57(2):266–274
Gomez MV, Kalapothakis E, Guatimosim C, Prado MA (2002) Phoneutria nigriventer venom: a cocktail of toxins that affect ion channels. Cell Mol Neurobiol 22(5–6):579–588
Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE (2014) Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genom 15:366
Hanna SL, Sherman NE, Kinter MT, Goldberg JB (2000) Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology 146(Pt10):2495–2508
Kalapothakis E, Penaforte CL, Beirão PSL, RomanoSilva MA, Cruz JS, Prado MAM, Guimarães PE, Gomez MV, Prado VF (1998) Cloning of cDNAs encoding neurotoxic peptides from the spider Phoneutria nigriventer. Toxicon 36(12):1843–1850
Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK, King GF, Olivera BM, Bosmans F (2015) From foe to friend: using animal toxins to investigate ion channel function. J Mol Biol 427(1):158–175
Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5:5277
Kleifeld O, Doucet A, Prudova A, auf dem Keller U, Gioia M, Kizhakkedathu JN, Overall CM (2011) Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 6(10):1578–1610
Lucas S (1988) Spiders in Brazil. Toxicon 26(9):759–772
Nunes KP, Torres FS, Borges MH, Matavel A, Pimenta AM, De Lima ME (2013) New insights on arthropod toxins that potentiate erectile function. Toxicon 69:152–159
Oukkache N, Chgoury F, Lalaoui M, Cano AA, Ghalim N (2013) Comparison between two methods of scorpion venom milking in Morocco. J Venom Anim Toxins Trop Dis 19(1):5
Penaforte CL, Prado VF, Prado MA, Romano-Silva MA, Guimaraes PE, De marco L, Gomez MV, Kalapothakis E (2000) Molecular cloning of cDNAs encoding insecticidal neurotoxic peptides from the spider Phoneutria nigriventer. Toxicon 38(10):1443–1449
Pimenta AMC, Rates B, Bloch C Jr, Gomes PC, Santoro MM, De Lima ME, Richardson M, Cordeiro MN (2005) ESI-Q-ToF and MALDI-ToF-ToF fine analyses to solve micro-heterogeneity in posttranslated modified peptides from Phoneutria nigriventer (Aranea Ctenidae) venom. Rapid Commun Mass Spectrom 19(1):31–37
Pineda SS, Undheim EA, Rupasinghe DB, Ikonomopoulou MP, King GF (2014) Spider venomics: implications for drug discovery. Future Med Chem 6(15):1699–1714
Richardson M, Pimenta AM, Bemquerer MP, Santoro MM, Beirão PS, Lima ME, Figueiredo SG, Bloch CJR, Vasconcelos EA, Campos FA, Gomes PC, Cordeiro MN (2006) Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria. Comp Biochem Physiol C: Toxicol Pharmacol 142(3–4):173–187
SINAN/SVS, Brazilian Ministry of Health (2015) http://dtr2004.saude.gov.br/sinanweb/. Accessed 12 Feb 2015
Tashima AK, Zelanis A, Kitano ES, Ianzer D, Melo RL, Rioli V, Sant’ Anna SS, Schenberg ACG, Camargo ACM, Serrano SMT (2012) Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteom 11(11):1245–1262
Troncone LR, Georgiou J, Hua SY, Elrick D, Lebrun I, Magnoli F, Charlton MP (2003) Promiscuous and reversible blocker of presynaptic calcium channels in frog and crayfish neuromuscular junctions from Phoneutria nigriventer spider venom. J Neurophysiol 90(5):3529–3537
Vaudel M, Barsnes H, Berven FS, Sickmann A, Martens L (2011) SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11(5):996–999
Vaudel M, Burkhart JM, Zahedi RP, Oveland E, Berven FS, Sickmann A, Martens L, Barsnes H (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 33(1):22–24
Zelanis A, Tashima AK (2014) Unraveling snake venom complexity with ‘omics’ approaches: challenges and perspectives. Toxicon 87:131–134
Zelanis A, Tashima AK, Rocha MM, Furtado MF, Camargo AC, Ho PL, Serrano SM (2010) Analysis of the ontogenetic variation in the venom proteome/peptidome of Bothrops jararaca reveals different strategies to deal with prey. J Proteome Res 9(5):2278–2291
Acknowledgments
This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (11/08514-8; 13/07467-1; 02/04545-7) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Human rights and animal statement
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Handling Editor: M. S. Palma.
Electronic supplementary material
Below is the link to the electronic supplementary material.
About this article
Cite this article
Liberato, T., Troncone, L.R.P., Yamashiro, E.T. et al. High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids 48, 901–906 (2016). https://doi.org/10.1007/s00726-015-2151-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00726-015-2151-6