Use este identificador para citar ou linkar para este item:
https://repositorio.ufpe.br/handle/123456789/11498
Compartilhe esta página
Título: | Otimização de Reservoir Computing com PSO |
Autor(es): | Sergio, Anderson Tenório |
Palavras-chave: | Reservoir Computing; PSO; Otimização; Previsão de Séries Temporais |
Data do documento: | 7-Mar-2013 |
Editor: | Universidade Federal de Pernambuco |
Abstract: | Reservoir Computing (RC) é um paradigma de Redes Neurais Artificiais com aplicações importantes no mundo real. RC utiliza arquitetura similar às Redes Neurais Recorrentes para processamento temporal, com a vantagem de não necessitar treinar os pesos da camada intermediária. De uma forma geral, o conceito de RC é baseado na construção de uma rede recorrente de maneira randômica (reservoir), sem alteração dos pesos. Após essa fase, uma função de regressão linear é utilizada para treinar a saída do sistema. A transformação dinâmica não-linear oferecida pelo reservoir é suficiente para que a camada de saída consiga extrair os sinais de saída utilizando um mapeamento linear simples, fazendo com que o treinamento seja consideravelmente mais rápido. Entretanto, assim como as redes neurais convencionais, Reservoir Computing possui alguns problemas. Sua utilização pode ser computacionalmente onerosa, diversos parâmetros influenciam sua eficiência e é improvável que a geração aleatória dos pesos e o treinamento da camada de saída com uma função de regressão linear simples seja a solução ideal para generalizar os dados. O PSO é um algoritmo de otimização que possui algumas vantagens sobre outras técnicas de busca global. Ele possui implementação simples e, em alguns casos, convergência mais rápida e custo computacional menor. Esta dissertação teve o objetivo de investigar a utilização do PSO (e duas de suas extensões – EPUS-PSO e APSO) na tarefa de otimizar os parâmetros globais, arquitetura e pesos do reservoir de um RC, aplicada ao problema de previsão de séries temporais. Os resultados alcançados mostraram que a otimização de Reservoir Computing com PSO, bem como com as suas extensões selecionadas, apresentaram desempenho satisfatório para todas as bases de dados estudadas – séries temporais de benchmark e bases de dados com aplicação em energia eólica. A otimização superou o desempenho de diversos trabalhos na literatura, apresentando-se como uma solução importante para o problema de previsão de séries temporais. |
URI: | https://repositorio.ufpe.br/handle/123456789/11498 |
Aparece nas coleções: | Dissertações de Mestrado - Ciência da Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Dissertaçao Anderson Sergio.pdf | 1,33 MB | Adobe PDF | Visualizar/Abrir |
Este arquivo é protegido por direitos autorais |
Este item está licenciada sob uma Licença Creative Commons